While Peurifoy fought the bureaucratic wars, Bill Stevens and the rest of the nuclear safety department continued to study how to make nuclear weapons less likely to detonate by accident, spread plutonium, or fall into the wrong hands. During the late 1960s, Stevens had begun to worry about a terrorist attempt to steal a weapon, and the massacre at the 1972 Munich Olympics demonstrated that the threat was real. The weapons inside NATO storage igloos seemed the most vulnerable to theft, not only by potential terrorists but also by rogue elements of an allied army or enemy troops. If an igloo seemed on the verge of being overrun, NATO forces were supposed to “spike the guns” — to attach a shaped explosive charge to each weapon and blow it up. A nuclear detonation wouldn’t occur. But the collateral damage could be enormous, and a great deal of plutonium dust might be spread. Stevens thought that better ways of keeping weapons out of the wrong hands needed to be found and that the risk of plutonium dispersal had to be taken most seriously.
Changes were soon made to the storage practices at NATO igloos and to the emergency procedures for destroying weapons. Antiterrorism research at Sandia led to the development of new perimeter control technologies, such as motion detectors, and innovative methods for stopping intruders who somehow managed to get past the door of an igloo. Nozzles on the walls would rapidly fill the place with sticky foam, trapping intruders and preventing the removal of nuclear weapons. The foam looked ridiculous, like a prop from a Three Stooges film, but it worked.
Peurifoy and Stevens also looked at how nuclear weapons should be rendered safe after an accident. The civilians at Sandia and the military personnel in Explosive Ordnance Disposal units often had conflicting notions about what should be done. It was another dispute that pitted scientists in white lab coats against men in uniform. Air Force bomb squads were accustomed to dealing with conventional weapons. And they were trained to get the job done quickly — during wartime, an unexploded bomb near a runway could prevent essential aircraft from taking off. The EOD guys liked to approach a weapon, tear it down fast, and get rid of it. Peurifoy and Stevens thought that wasn’t a good idea with nuclear weapons. A hydrogen bomb that survived an accident reasonably intact could still detonate if someone handled it improperly. Even if it didn’t produce a nuclear yield, the high explosives could spread plutonium and harm anyone nearby.
After the B-52 crash near Cumberland, Maryland, an Air Force EOD team started to remove the weapons from the wreckage of the plane, using improvised heavy machinery — until a representative from Sandia intervened and asked them to stop. The bombs weren’t moved until their condition had been assessed. A naval bomb disposal team began to disassemble the Mark 28 bomb recovered from the ocean near Palomares — until another Sandia nuclear safety specialist made clear that a ship, rolling over swells, might not be the best place for the task. Peurifoy and Stevens thought that, most of the time, there was no need to rush. “Don’t move someone who’s hurt before you know the extent of the injuries,” a basic rule of first aid, also applied to nuclear weapons. Ease of disassembly had never been a top priority among weapon designers. In fact, it was rarely considered when weapons were on the drawing board. Inside the metal casing, parts were tightly welded or glued together. If you weren’t careful, thermal batteries could be ignited, high explosives set off. Peurifoy took an EOD course and gained tremendous respect for the soldiers and airmen who put on bomb suits to render bombs safe. They were fearless. But the weapons they typically handled might kill them and injure people within about a quarter of a mile. Peurifoy didn’t want anyone to feel hurried or gung ho while trying to dismantle a thermonuclear warhead.
The need to retrofit and retire older weapons in the stockpile became more urgent after a discovery about the Mark 28 hydrogen bomb. Stan Spray found that one of the bomb’s internal cables was located too close to its skin. If the weapon was exposed to prolonged heat, the insulation of the cable would degrade — and the wires inside it could short circuit. One of those wires was connected to the ready/safe switch, another to the thermal battery that charged the X-unit. It was a serious problem. The heat from a fire could arm a Mark 28 bomb, ignite its thermal battery, charge its X-unit, and then fully detonate the high explosives. Depending on the particular model of the Mark 28, a blast of anywhere from 70 kilotons to 1.5 megatons would immediately follow.
The problem with the Mark 28 was more significant than the safety flaws in other weapons. Mark 28 bombs were routinely carried by B-52 bombers on ground alert. And those B-52s sometimes caught on fire, even when they never left the ground. The bomber carried more than 300,000 pounds of highly flammable JP-4 jet fuel, a mix of gasoline and kerosene. In preparation for a typical B-52 flight, the crew would spend at least an hour in the plane, going through checklists, before starting the engines — and then the engines would be started one after another, until all eight were running. It could take an hour and a half for the pilot to get a B-52 into the air. But planes on ground alert were expected to be airborne within ten or fifteen minutes, the maximum time available for a “base escape.” Explosive cartridges on the four engine pods would be detonated by the copilot, as soon as he climbed into the plane, spinning the turbines rapidly and starting all eight engines in about a minute. A “cartridge start” was a memorable sight — a series of small explosions, B-52s filling the runway with clouds of smoke — and crews on ground alert practiced it regularly. And yet it could also start a fire.
The combination of Mark 28 bombs and B-52 bombers on alert was increasingly dangerous. Peurifoy doubted it was worth the risk. Both were aging weapon systems; many of the B-52s were older than their pilots. And most of the planes would probably never reach their targets, let alone return safely from a mission. After a 1975 briefing on the role of the Strategic Air Command’s bombers in executing the SIOP, the head of the CIA, William Colby, expressed surprise that “our B-52s are planned for one-way missions.” Once an emergency war order was transmitted, the bombers on ground alert would quickly take off from their bases in the United States, fly eight to ten hours toward Soviet targets — and find what? The Soviet Union would have already been hit by thousands of warheads delivered by American missiles. Targets that hadn’t been destroyed were likely to be surrounded by antiaircraft missiles, and dust clouds of unimaginable scale would blanket the landscape. Each B-52 was assigned a poststrike base in Europe or the Middle East where it was supposed to land, refuel, and pick up more nuclear weapons for another run at the Soviets. Would any of those bases still exist, if bombers somehow managed to survive their first passage through Soviet airspace? Most B-52 crews didn’t count on it.
Stan Spray added components from the Mark 28 bomb to his Burned Board briefing, along with a dramatic flourish: when the bomb’s wires short-circuited, a flashbulb went off. The briefing was given to hundreds of officials — with little immediate effect. A study of all the nuclear weapons in the American arsenal was completed by one of Peurifoy’s deputies in 1977. It provided the Department of Defense with a list of the weapons posing the greatest threat and a timetable for retiring them or improving their safety. The Mark 28 bomb was at the top of the list, followed by the W-25 warhead of the Genie antiaircraft missile. Despite being the oldest sealed-pit weapon in the stockpile, vulnerable to lightning, and fitted with an outdated accelerometer, the Genie was still being loaded onto fighter planes. On the list of weapons requiring urgent attention, the only strategic warhead was the W-53 atop the Titan II missile. It needed a “retrofit for Enhanced Electrical Safety.”
Читать дальше