11 =
12 =
13 =
14=
15=
16=
17 =
18 =
19 =
Однако на этом похождения раковины-нуля не кончались. Раковина все же стала появляться и без точки, располагаясь на разных полках цифровой этажерки майя. Это означало, что настоящее число было образовано без участия единиц той полки, на которой в данном случае находилась раковина. Она говорила, что единиц этой полки (на которой она расположилась) попросту нет, как нет, например, десятков, сотен или тысяч в числе, записанном арабскими цифрами, если на отведенном для них месте стоят нули.
Но коль скоро в числе наличествовала хотя бы одна-единственная единица любой из полок, довольно сложный рисунок раковины-нуля сразу же исчезал с нее. Покажем это условно на простейшем примере:
(20) +
(1) =
, что соответствует числу 21 в нашем представлении.
Действительно, если нижняя точка находится на нижней полке, то это обозначает наличие одной единицы первой позиции, или, попросту говоря, «единицу», но уже не как абстрактный цифровой знак, а как конкретное число. Верхняя же полка указывает на наличие одной единицы второго порядка, каковой является двадцатка в двадцатеричной системе. Следовательно, перед нами двузначное число 21, образованное в полном соответствии со строгими законами позиционного принципа, но только расположенное не горизонтально, как мы привыкли, а вертикально. Проверим свой вывод простейшим арифметическим действием — сложением:
1 «единица» + 1 «двадцатка» = 21.
Чтобы окончательно усвоить урок математики майя, рассмотрим написание нескольких двузначных чисел майя; они наглядно продемонстрируют технику применения ими позиционного принципа, условно названного нами «числовой этажеркой майя»:
= 20
+ = 21;
= 1
= 20
+ = 22;
= 2
= 40
+ = 41;
= 1
= 40
+ = 45;
= 5
= 60
+ = 61;
= 1
= 80
+ = 84;
= 4
= 100
+ =101;
= 1
= 120
+ = 126;
= 6
= 240
+ = 256;
= 16
= 340
+ = 359…
= 19
Здесь было бы вполне естественно написать «и так далее», однако это самое «и так далее» как раз и не получается…
В двадцатеричной системе счета древних майя есть исключение: стоит прибавить к числу «359» только одну-единственную единицу первого порядка, как это исключение немедленно вступает в силу. Суть его сводится к следующему: число 360 является начальным числом третьего порядка (!), и его место уже не на второй, а на третьей полке.
Но тогда выходит, что начальное число третьего порядка больше начального числа второго не в двадцать раз (20X20 = 400, а не 360!), а только в восемнадцать! Значит принцип двадцатеричности нарушен! Все верно. Дело обстоит именно так. Это и есть исключение.
Читать дальше