Герой романа Вашингтона Ирвинга (1819), который, вернувшись в мир после пробуждения, с удивлением обнаружил, как много лет прошло для других, но не для него.
Речь идет о его популярных книгах, построенных вокруг персонажа – мистера Томпкинса.
На самом деле, несколько лет спустя общая теория относительности Эйнштейна показала, что влияние гравитации далеко от того, чтобы быть пренебрежимо малым, и сравнимо с фактором скорости, но имеет противоположный эффект. Эти эффекты, по существу, компенсируют друг друга, так что часы, размещенные на вращающейся жидкой оболочке Земли (деформированной своим вращением), будут «идти» в одинаковом темпе независимо от своего положения.
Тем более, что он казался содержащим внутреннее противоречие. Действительно, если рассмотреть двух близнецов, движущихся с постоянной скоростью относительно друг друга, то каждый из близнецов должен наблюдать замедление времени другого близнеца по сравнению со своим. И это кажется абсурдным. На самом деле, случай близнецов, движущихся относительно друг друга прямолинейно и всегда c постоянной скоростью , не позволяет в конце (т. е. когда они снова будут находится вместе и в относительном покое) определить разницу в возрасте. Чтобы сделать такое заключение, необходимо, как мы всегда и предполагали, представить асимметричную ситуацию, в которой один из двух близнецов движется со скоростью, величина и/или направление которой меняется во времени .
Ниже дана реконструкция, в которой мы пытаемся воссоздать историю пребывания Эйнштейна в Париже на основе книги Michel Biezunski, Einstein à Paris (см. Избранную библиографию).
К сожалению, сейчас такое редко встречается. В настоящее время газеты и журналы (а также телевидение) любят ссылаться на последние научные достижения, однако страсть к чему-то новому и сенсационному, а также к потенциально опасному обычно преобладает над стремлением осознать философское содержание науки.
Бергсон А. Длительность и одновременность (о теории Эйнштейна). – М.: Добросвет, 2013; КДУ, 2006 (Henri Bergson, Durée et simultanéité. À propos de la théorie d’Einstein , Paris, Félix Alcan, 1922. Septième édition aux Presses universitaires de France, Paris, 1968; http://www.uqac.uquebec.ca/zone30/Classique_des_sciences_sociales/index.html).
См. недавнее переиздание: La Pensée , numéro 210, février 1980, p. 12–29, précédée d’une introduction de Michel Paty, p. 3–11.
См. комментарий редакторов к седьмому изданию Henri Bergson, Durée et simultanéité. À propos de la théorie d’Einstein , Paris, Félix Alcan, 1922. Septième édition aux Presses universitaires de France, Paris, 1968, подчеркивающий актуальность переиздания этой книги.
Пруст М. Письма (1879–1922), выбор и аннотация Франсуазы Лериш. Письмо 572 (Marcel Proust, Lettres (1879–1922) , sélection et annotation par Françoise Leriche, Plon, 2004. Lettre 572, p. 1052–1054). Я благодарен Жану Ости, который обратил мое внимание на это письмо, и Тьерри Томасу, который обратил мое внимание на предварительные рукописи «Под сенью девушек в цвету» ( À l’ombre des jeunes filles en fleurs ), процитированные здесь.
Селеста А. Господин Пруст . – СПб.: Модерн, 2002 (Céleste Albaret, Monsieur Proust, Souvenirs recueillis par Georges Belmont , Paris, Éditions Robert Laffont, 1973).
С математической точки зрения Пуанкаре предшествовал Минковскому в своей статье «О динамике электрона», написанной в июле 1905 г. и опубликованной в 1906 г. В самом деле, в конце этой статьи в ходе технического развития Пуанкаре (мысленно) комбинирует пространство и время в некоторое «четырехмерное пространство» c координатами ( x, y, z, t √(−1)) и далее обсуждает (евклидову) геометрию этого «пространства», применяя его к физике, и в частности к физике гравитации. Возможные причины, по которым Минковский, знавший эту работу Пуанкаре, не ссылается на нее на сентябрьской конференции 1908 г., обсуждаются в статье Тибо Дамура «Что упущено из лекции Raum und Zeit Минковского» (Thibault Damour, What is missing from Minkowski’s «Raum und Zeit» lecture ). Статья доступна в электронном архиве: Arxiv: 0807.1300 [physics. hist-ph].
Если мы фиксируем каждую точку в пространстве с помощью трех ортогональных координат x, y, z (длина, ширина и высота), то расстояние D между двумя точками с соответствующими координатами ( x, y, z ) и ( x + ∆ x, y + ∆ y, z + ∆ z ) определяется из уравнения D ² = (∆ x )² + (∆ y )² + (∆ z )².
В другом месте Пруст, говоря о комбрейской церкви, пишет: «Все это делало из нее […] сооружение, так сказать, четырех измерений, и четвертым было время».
Читать дальше
Конец ознакомительного отрывка
Купить книгу