2 E = nF.
Также учтем, что N граней пересекаются в каждой из V вершин, и притом каждое из E ребер соединяет две вершины, так что:
2 E = NV.
И наконец, есть и еще одно, менее явное, соотношение между величинами F, E и V . Чтобы его вывести, нужно принять дополнительное допущение – пусть наш многогранник является односвязным, то есть любой путь, который можно проложить между двумя различными точками его поверхности, можно непрерывно преобразовать в любой другой путь между теми же самыми точками. Это условие выполняется, например, для куба и тетраэдра, но не для многогранника (неважно, правильного или нет), который получили, разместив его вершины и грани вдоль поверхности тора. Существует сложная теорема, которая доказывает, что любой односвязный многогранник можно получить, если последовательно добавлять новые ребра, грани и/или вершины к тетраэдру, а потом сжать получившуюся фигуру до нужной формы. Зная об этом, мы покажем, что любой односвязный многогранник (правильный или неправильный) удовлетворяет равенству:
F – E + V = 2.
Легко проверить, что равенство удовлетворено для тетраэдра, в случае которого F = 4, E = 6 и V = 4, поэтому в левой части уравнения имеем: 4–6 + 4 =2. Если теперь мы добавим к любому многограннику ребро, секущее какую-либо из его граней от одного ребра до другого, то у нас добавится одна дополнительная грань и две дополнительные вершины, а значит, величины F и V увеличатся на единицу и двойку, соответственно. Но оба из прежних ребер, в которые упирается новое ребро, при этом еще окажутся разбиты на два, и поэтому E увеличится на 1 + 2 =3, и выходит, что соотношение F – E + V останется неизменным. Точно так же, если мы добавим новое ребро, которое пролегает между какой-либо вершиной и точкой, принадлежащей одному из имеющихся ребер, то мы увеличим F и V на единицу, а E при этом на 2, и значит, формула F – E + V все равно даст тот же результат. Поскольку любой односвязный многогранник может быть построен произвольной комбинацией этих действий, все получающиеся многогранники должны сохранять то же самое соотношение, то есть для них выражение F – E + V = 2 будет так же справедливо, как и для тетраэдра (это простой пример того, чем занимается отрасль математики под названием «топология»; в топологии число, выражаемое формулой F – E + V , называется эйлеровой характеристикой полиэдра, или многогранника).
Теперь мы можем совместно решить все три уравнения для E, F и V . Проще всего использовать первые два уравнения, чтобы заменить F и V в третьем на выражения, соответственно, 2 E / n и 2 E / N , и, таким образом, третье уравнение выражается в форме 2 E / N – E +2 E / N =2, что дает
Далее из двух других уравнений получаем:
И теперь для пяти вышеперечисленных случаев количество граней, вершин и ребер будет равно:
Это и есть платоновы тела.
Пифагорейцы открыли, что две струны щипкового музыкального инструмента одной и той же толщины, сделанные из одинакового материала и одинаково сильно натянутые, когда их щипают одновременно, производят приятный слуху звук, если отношение длин двух таких струн выражается как дробь с небольшим целым числителем и знаменателем – например, 1/2, 2/3, 1/4, 3/4 и т. д. Чтобы понять, почему так происходит, сперва нам нужно выяснить, как связаны друг с другом частота, длина и скорость распространения для любого вида волн.
Любая волна – это процесс распространения колебаний. В случае акустической (звуковой) волны в воздухе распространяются колебания давления воздуха, в случае волны на поверхности моря распространяются колебания толщины воды, в случае световой волны определенной поляризации колеблется вектор напряженности электрического поля, а в случае волны, бегущей вдоль струны, распространяются колебания частиц струны, отклоняющихся от положения равновесия в направлении, перпендикулярном самой струне. Максимальное абсолютное отклонение колеблющейся величины от равновесного значения называется амплитудой волны.
Читать дальше
Конец ознакомительного отрывка
Купить книгу