Эрвину Шредингеру в его великолепной статье, увидевшей свет в 1926 г., выпала честь первому написать в явном виде волновое уравнение волновой механики и вывести из него строгий метод решения квантовых задач. Чтобы получить уравнение для волн, связанных с частицей, можно исходить из идеи о том, что с точки зрения новой теории старая механика эквивалентна приближению геометрической оптики. В теории Якоби траектории частиц рассматриваются как световые лучи, которые соответствуют поверхности, определяемой полным интегралом уравнения первого порядка второй степени в частных производных, названного уравнением Якоби. Мы уже отмечали (см. гл. II п. 2), что уравнение Якоби по форме совершенно аналогично основному уравнению геометрической оптики и что именно это обстоятельство – причина аналогии между теорией Якоби и теорией распространения волн в ее геометрическом приближении. Поэтому волновое уравнение волновой механики нужно записать таким образом, чтобы соответствующее уравнение геометрической оптики, справедливое в условиях, которые мы уже уточнили, совпадало с уравнением Якоби. Чтобы получить уравнение распространения, удовлетворяющее этому условию, Шредингер проделал следующее: прежде всего он установил соотношение, которое для данной задачи в классической механике давало бы энергию как функцию координат частицы и компонент ее импульса. Далее в этом выражении, которое носит в механике название гамильтониана, каждая компонента импульса в декартовой системе координат заменялась символом производной по соответствующей координате, умноженной на константу, пропорциональную постоянной Планка. Таким образом, гамильтониан был превращен в некий оператор, оператор Гамильтона. Теперь достаточно было применить этот оператор к волновой функции системы (которая обычно обозначается греческой буквой «КСИ») и приравнять полученный результат производной волновой функции по времени, умноженной на упомянутую константу.
Полученное таким образом уравнение можно принять в качестве волнового уравнения частицы, ибо в приближении геометрической оптики оно сводится к уравнению Якоби, которое можно написать для рассматриваемой задачи в классической механике.
Здесь следует сделать несколько замечаний по поводу полученного таким способом уравнения распространения связанных с частицей волн. Во-первых, это уравнение определяет волновую функцию как функцию скалярную, а не векторную. Это приводит к существенному различию между волной, связанной с частицей, и световой волной. Правда, известно, что волновая теория света также вначале исходила из того, что световые колебания описываются скалярной функцией. Такая точка зрения и сегодня может объяснить многие явления дифракции и интерференции. И только лишь при рассмотрении поляризации нужно учитывать векторный характер волновой функции. Итак, можно предположить, что в один прекрасный день скалярная волновая функция будет заменена волновой функцией нескольких компонент при соответствующем обобщении теории. Ниже мы покажем, что это предсказание подтвердилось рождением теории электрона Дирака. Как мы увидим, эта теория не одинакова для случаев электрона и фотона.
Следует сделать еще одно замечание по поводу уравнения распространения волн. Дело в том, что оно комплексно, т е. его коэффициенты не являются действительными числами, в них фигурирует величина (корень из –1). Это обстоятельство, на первый взгляд совершенно случайное, показывает, насколько трудно придать «КСИ»-волне волновой механики такой же физический смысл, какой приписывает волнам классическая физика. Действительно, в классической физике распространение волны связано с переносом свойств колеблющейся среды, существование которой либо совершенно очевидно, либо предполагается (последнее только в случае классической теории света). Они описывают действительные процессы и должны быть выражены действительными функциями. Если же, как это часто делают при описании оптических явлений, иногда полезно заменить указанные действительные функции комплексными величинами, действительной частью которых они являются, то это только вычислительный прием, без которого всегда можно обойтись.
В волновой механике все наоборот. Из-за мнимых коэффициентов в самом волновом уравнении комплексный характер «КСИ»-функции, по-видимому, является существенным. Он приводит к тому, что все попытки рассматривать волны волновой механики как физическую реальность, соответствующую колебаниям какой-то среды, оказываются несостоятельными. В ходе развития волновой механики функцию «КСИ» стали рассматривать как некую вспомогательную величину, значение которой позволяет вычислить другую величину. Эта последняя уже действительна, она имеет физический смысл, причем, как правило, статистического характера. Мы еще должны будем вернуться к этому пункту. Здесь же уместно было просто отметить, почему волновое уравнение волновой механики уже по своей форме вынуждает нас отказаться от идеи дать этим волнам непосредственное физическое толкование.
Читать дальше