Применение только что рассмотренной теории колебаний к атому требует, чтобы мы считали стационарные боровские состояния соответствующими стационарным волнам, связанным с атомными электронами.
Несомненно, что такая интерпретация проливает свет на истинный смысл условий квантования и делает весьма вероятным уточнение основных идей, которые мы обрисовали выше, и того пути, по которому они привели нас к взаимосвязи волн и частиц. Однако для лучшего понимания материала последующих глав необходимо особо подчеркнуть две трудности.
Первая возникает, когда мы хотим убедиться в стационарном характере волн, связанных со стационарным состоянием атома, и пользуемся при этом формулой, сопоставляющей движение частицы распространению волны в смысле геометрической оптики. По существу, переводя на квантовый язык идеи, хорошо известные в аналитической механике, мы устанавливаем соответствие между траекториями частицы, какими их представляем себе классически, и лучами, по которым распространяются волны. Мы уже отмечали, что геометрическая оптика с точки зрения волновых представлений – лишь первое приближение, справедливое в том случае, когда волны распространяются свободно, не встречая никаких препятствий, и когда, кроме того, скорость распространения не меняется слишком быстро от точки к точке. Теперь уже легко видеть, что второе условие для волн, связанных с электроном внутри атома, конечно, не выполняется. Следовательно, путь, каким мы пришли к стационарному характеру волны, отвечающей стационарному состоянию атома, нельзя признать строгим.
Избежать этого можно, лишь получив уравнение распространения волны, связанной с электроном, и решив задачу о собственных значениях для волн внутри атома, которая при этом возникает.
Однако необходимо особо подчеркнуть главную идею, содержащуюся в предыдущем рассуждении. Эта важная идея заключается в следующем: так как геометрическая оптика есть только приближение, верное в определенных условиях, и соответствие установлено между классической динамикой и распространением волн по законам геометрической оптики, то вполне возможно, что классическая динамика тоже лишь приближение, имеющее те же пределы применимости, что и геометрическая оптика, перефразировкой которой она, в известном смысле, является.
Во всех случаях, когда волна, связанная с частицей, распространяется не по законам геометрической оптики (а мы уже видели, что это бывает как раз в случае волн, связанных с электронами в квантованных атомных системах), динамическое поведение частицы нельзя описывать, исходя из понятий и законов классической механики. Именно поэтому механику Ньютона и даже механику Эйнштейна нужно впредь называть старой механикой, и необходимо создать новую, в рамках которой эта старая будет первым приближением, справедливым в определенных условиях. Короче говоря, возникла необходимость, как мы писали в те годы, создать новую механику волнового характера, которая будет относиться к старой механике, как волновая оптика к геометрической оптике. Точно и тщательно эта идея была осуществлена в бессмертной работе Шредингера.
В чем же заключается вторая трудность? Прежде чем перейти к существу дела, рассмотрим в качестве простого примера систему, в которой возникают стационарные волны, – струну с закрепленными концами. В такой струне может возбуждаться бесконечное число стоячих волн. Случай, когда струна несет только одно стационарное колебание, т е. когда она движется строго по синусоиде, исключительный. Обычно струна после нескольких начальных колебаний начинает двигаться по очень сложному закону за исключением ее концов, которые, естественно, не двигаются вообще. Однако математическая теория рядов Фурье гласит, что движение струны, каким бы сложным оно ни было, может быть представлено в виде суммы стационарных колебаний. Математически этот результат выражают следующим образом: синусоидальные функции, описывающие отдельные стационарные волны, образуют полную систему ортогональных функций. Этот результат можно обобщить на случай систем более сложных, чем струна с закрепленными концами. Можно показать, что если в какой-либо области пространства возникают стационарные колебания, то, какова бы ни была их форма, ее можно представить в виде суперпозиции некоторого числа (конечного или бесконечного) стационарных колебаний.
Применение этих общих идей к квантованным атомным системам сразу же приводит к упомянутой трудности. По первоначальным представлениям Бора атом всегда находится в том или ином стационарном состоянии. При этом предполагается дискретность, как раз и означающая квантование. Такой взгляд ни в чем не противоречит классической картине состояния атома. Однако если предположить, что стационарное состояние соответствует стационарным колебаниям, то общая теория, которую мы только что бегло описали, приводит к такому выводу: состояние атома в данный момент времени может свестись к единственному стационарному состоянию только в исключительных случаях. В общем же случае оно представляет собой наложение определенного числа стационарных состояний. Можно сказать, что с точки зрения классических представлений такое утверждение лишено всякого смысла, ибо невозможно себе представить, что атом может в один и тот же момент времени находиться в нескольких состояниях. Эта трудность показывает, что развитие новой механики претендует на глубокую перестройку основных понятий классической физики, перестройку, необходимость которой, как мы уже говорили, в зародыше содержится уже в самом существовании кванта действия. И только вероятностная интерпретация новой механики позволит нам скоро придать суперпозиции нескольких состояний физический смысл.
Читать дальше