Во-вторых, некоторое расхождение в математической форме, по-видимому, указывало на то, что движение частицы нельзя на деле физически сопоставить с распространением волны. Если приравнять скорость частицы и скорость волны, то мы столкнемся с неприятным фактом: эти две скорости по-разному войдут в формулировку принципов Мопертюи и Ферма соответственно. И хотя эти трудности были хорошо известны, но появление тех новых идей, о которых мы уже говорили, придавало волнующую остроту мысли о том, что в классической аналитической механике формальная аналогия между траекториями частиц и световыми лучами устанавливается через посредство понятия действия, т е. в точности того самого понятия, которое послужило основой для введения квантов. Не подтверждает ли это в самом деле ту мысль, что квант действия служит соединительным звеном между корпускулярным и волновым представлениями о материальных частицах?
И, наконец, еще одно указание. Если правда, что электрон в макроскопических процессах всегда ведет себя как обычная частица, какие есть основания при описании поведения электрона внутри атома навязывать чуждые ему условия квантования, в которых появляются целые числа? Такой способ ограничения классической динамики, когда она применяется к электрону, ясно говорит о ее неполноте и указывает на то, что свойства электрона не всегда такие, как у простой частицы. Если вдуматься, то привлечение целых чисел для характеристики стационарных состояний атомных электронов оказывается уже весьма симптоматичным.
В самом деле, мы часто встречаемся с целыми числами в тех разделах физики, где рассматриваются волны: в теории упругости, акустике, оптике. Они появляются при описании стоячих волн, интерференции, резонанса. Поэтому вполне допустимо предположить, что интерпретация условий квантования может привести к волновой точке зрения на электроны внутри атома. Таким образом, попытаться приписать электрону или вообще всем частицам, подобно фотонам, двойственную природу, наделить их волновыми и корпускулярными свойствами, связанными между собой квантом действия, – такая задача представлялась крайне необходимой и плодотворной.
2. Частица и волна, связанная с ней
В чем же в основном заключалась задача? По существу в установлении определенного соответствия между распространением некоей волны и движением частицы, причем величины, описывающие волну, должны быть связаны с динамическими характеристиками частицы соотношением, которое содержит постоянную Планка h . При том желательно установить это соответствие таким образом, чтобы общие правила, выражающие связь волны и частицы, примененные к фотону, давали хорошо известные и проверенные соотношения Эйнштейна между фотоном и световой волной.
Прежде чем приступить к решению этой задачи, было естественно рассмотреть самый простой случай: задачу о равномерном и прямолинейном движении частицы с заданными постоянными значениями энергии и импульса. Из соображений симметрии следовало сопоставить ей волну, распространяющуюся в том же направлении. Теперь оставалось только определить, как связаны между собой частота и длина этой волны с динамическими характеристиками частицы. Аргументы, основанные на общих принципах теории относительности, приводят к следующему результату: частота волны, связанной с движущейся частицей, равна энергии частицы, деленной на постоянную Планка, а длина волны – частному от деления постоянной Планка на импульс частицы. Такая связь между частицей и соответствующей ей волной обладает еще и тем большим преимуществом, что она в точности совпадает с соотношением Эйнштейна для фотона и световой волны. Так был осуществлен знаменитый синтез, ибо оказалось, что для частиц материи и для света установлен один и тот же вид дуализма.
Есть еще один, совершенно независимый путь, который ведет к такому же способу установления связи между частицей и соответствующей ей волной. Мы уже говорили, что теория Якоби очень прозрачно намекает на идею о сходстве траекторий частиц с лучом некоей волны, отождествляя интеграл действия частицы с волновым интегралом Ферма, так что принцип наименьшего действия совпадает с принципом минимального времени. Если выполнить эту операцию, то мы снова тут же находим, что, с одной стороны, энергия пропорциональна частоте, с другой стороны, импульс обратно пропорционален длине волны. Остается только положить коэффициент пропорциональности равным h (что совершенно естественно и согласуется с идеей объединения этих двух сторон дуализма посредством кванта действия), чтобы снова получить соотношение, уже установленное с помощью теории относительности. Эта новая цепочка рассуждений нигде явно не обращается к понятиям теории относительности. Поэтому она может быть целиком развита в рамках ньютоновой динамики.
Читать дальше