Размышления о природе пространства и времени привели нас к пониманию того, что Земля не просто падает по прямой линии вокруг Солнца. Эта прямая линия расположена в искривленном пространстве-времени, что проявляется в виде почти круговой орбиты движения в космическом пространстве. Но мы не пойдем дальше и не будем приводить доказательств того, что Земля падает по геодезической линии, тень которой в трехмерном пространстве оказывается почти круговой. Мы не делаем этого только потому, что это предполагает слишком сложные математические вычисления. Кроме того, это заставило бы нас высказать некоторые утверждения о том, как объекты искажают пространство-время, а мы всячески избегаем здесь этой темы. Математическая сложность – основная причина того, почему Эйнштейну понадобилось десять лет на разработку своей теории. Общая теория относительности достаточно проста с концептуальной точки зрения, но сложна в математическом плане, однако эта сложность ни в коем случае не омрачает ее красоту. Действительно, многие физики считают общую теорию относительности Эйнштейна самой красивой из всех теорий об устройстве Вселенной.
Вы наверняка обратили внимание, что в процессе обсуждения этой темы мы не выделяли один тип объектов на фоне других. В частности, сам свет также должен перемещаться в пространстве-времени по геодезическим линиями. На каждом участке пространства-времени, по которому проходит свет, он перемещается по одной из диагональных прямых, о которых шла речь в главе 4, но после соединения всех участков вместе мы обнаружим траекторию, которая отклоняется в пространстве. Это отклонение отображает деформацию пространства-времени под воздействием массы и энергии. Как и в случае перемещения Земли по орбите вокруг Солнца, траектория движения света сквозь пространство представляет собой тень его четырехмерной геодезической линии. Действенность принципа эквивалентности и предполагаемое отклонение траектории движения света можно наглядно проиллюстрировать с помощью еще одного мысленного эксперимента.
Представьте, что вы стоите на поверхности Земли и выстреливаете лазерный луч в горизонтальном направлении. Что с ним происходит? Об этом нам расскажет принцип эквивалентности. Свет падает на земную поверхность точно с такой же скоростью, что и любой предмет, выпущенный в тот же момент времени, когда выстреливается лазерный луч. Если бы у Галилея был доступ к лазеру и он выстрелил лазерным лучом с Пизанской башни горизонтально, выпустив одновременно пушечное ядро, то, согласно прогнозу Эйнштейна, лазерный луч достиг бы поверхности в то же время, что и ядро. Проблема проведения такого эксперимента в реальных условиях состоит в том, что поверхность Земли искривляется достаточно быстро, и лазерный луч так и не упадет на нее, улетев за пределы Земли. Если мы представим, что стоим на плоской поверхности, тогда эта проблема исчезнет и мы сможем ожидать, что лазерный луч упадет на землю точно в то же время, что и пушечное ядро, но только гораздо дальше. В действительности, если ядро достигает поверхности через одну секунду, то лазерный луч соприкоснется с поверхностью через одну световую секунду от башни, то есть на расстоянии около 300 тысяч километров.
Безусловно, описание гравитации в геометрических терминах звучит чрезвычайно убедительно и приводит к поразительным выводам, однако, как мы неоднократно подчеркивали на протяжении всей книги, оно совершенно бесполезно, если не позволяет составлять прогнозы, истинность которых можно проверить посредством экспериментов. К счастью для Эйнштейна, ему пришлось ждать всего четыре года, прежде чем его нетривиальные гипотезы получили подтверждение. Первая серьезная проверка истинности его теории была выполнена в 1919 году, когда Артур Эддингтон, Фрэнк Дайсон и Чарльз Дэвидсон написали работу под названием «Определение отклонения лучей света в гравитационном поле Солнца по данным наблюдений, проведенных во время полного солнечного затмения 29 мая 1919 года». Эта работа, опубликованная в журнале Philosophical Transactions of the Royal Society of London, содержит бессмертные слова: «…оба результата указывают на полное отклонение 1,75", соответствующее общей теории относительности Эйнштейна». Так Эйнштейн в одночасье стал мировой суперзвездой. Его эзотерическая теория об искривлении пространства-времени была подтверждена довольно значительными усилиями Эддингтона, Дайсона и Дэвидсона: для того чтобы увидеть солнечное затмение, им пришлось организовать экспедиции в город Собрал в Бразилии и на остров Принсипи у Западного побережья Африки. Затмение позволило ученым рассматривать звезды, которые находятся очень близко к Солнцу, из-за чего при обычных обстоятельствах солнечный свет не позволяет их увидеть. Свет этих звезд лучше всего подходил для проверки теории Эйнштейна: отклонение их лучей должно было быть самым большим, поскольку по мере приближения к Солнцу кривизна пространства-времени увеличивается. По существу, Эддингтон, Дайсон и Дэвидсон пытались выяснить, изменяют ли звезды свое положение в небе, когда Солнце проходит мимо них. Солнце в буквальном смысле слова изгибает пространство-время и действует в качестве линзы, искажая схему расположения звезд на небе.
Читать дальше
Конец ознакомительного отрывка
Купить книгу