Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать

Здесь есть возможность читать онлайн «Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Манн, Иванов и Фербер, Жанр: Физика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Почему Е=mc²? И почему это должно нас волновать: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Почему Е=mc²? И почему это должно нас волновать»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эта книга поможет понять теорию относительности и проникнуть в смысл самого известного в мире уравнения. Своей теорией пространства и времени Эйнштейн заложил фундамент, на котором зиждется вся современная физика. Пытаясь постичь природу, физики и сегодня создают теории, которые иногда в корне меняют нашу жизнь. О том, как они это делают, рассказывается в этой книге.
Книга будет полезна всем, кто интересуется устройством мира.

Почему Е=mc²? И почему это должно нас волновать — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Почему Е=mc²? И почему это должно нас волновать», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Каким бы притягательным и загадочным ни было измерение параметров далекого двойного пульсара, общая теория ощутимо присутствует даже здесь, на Земле, в контексте гораздо более распространенного феномена. Система спутников GPS охватывает весь мир, а ее успешное функционирование зависит от точности теорий Эйнштейна. Действующая 24 часа в сутки сеть спутников расположена вокруг Земли на высоте 20 тысяч километров, причем каждый спутник ежедневно делает два полных оборота вокруг планеты. Эти спутники применяются для триангуляции местоположения различных объектов на Земле с использованием точных бортовых часов. Спутники, размещенные на такой высокой орбите, находятся в более слабом гравитационном поле, а это означает, что их пространство-время искривлено иначе, чем для аналогичных часов на Земле. В итоге часы на спутниках спешат на 45 микросекунд в день. Кроме этого гравитационного эффекта, спутники еще и движутся с высокой скоростью (около 14 тысяч километров в час), поэтому вследствие замедления времени, предсказанного специальной теорией относительности Эйнштейна, часы отстают на семь микросекунд в день. В совокупности эти два эффекта приводят к тому, что часы на орбите спешат на 38 микросекунд в день. На первый взгляд может показаться, что это не так уж много, но игнорирование данного эффекта привело бы к полному выходу системы GPS из строя всего за несколько часов. Свет перемещается со скоростью около 30 сантиметров за одну наносекунду, которая составляет одну тысячемиллионную долю секунды. Следовательно, 38 микросекунд эквивалентны десяти километрам в день, что сделало бы невозможной точную навигацию. Решить эту проблему весьма просто: для этого достаточно настроить спутниковые часы так, чтобы они отставали на 38 микросекунд в день, – это позволит системе работать с точностью до метров, а не километров.

Эффект часов, размещенных на спутниках системы GPS и спешащих по сравнению с часами на Земле, легче понять с помощью материала, изложенного в данной главе. Фактически ускорение часов представляет собой прямое следствие принципа эквивалентности. Для того чтобы разобраться с этим, давайте мысленно перенесемся в 1959 год, в лабораторию Гарвардского университета. Роберт Паунд [64]и Глен Ребка [65]решили провести эксперимент, позволяющий «уронить» свет с крыши лаборатории в подвал, расположенный на 22,5 метра ниже. Если свет будет падать в строгом соответствии с принципом эквивалентности, то по мере его падения энергия должна увеличиваться в точности на ту же величину, что и в случае любого другого предмета, брошенного с этой же высоты [66]. Нам необходимо знать, что произойдет со светом по мере увеличения энергии. Другими словами, что Паунд и Ребка рассчитывали увидеть в подвале лаборатории в момент прибытия лучей света? Существует единственный способ, позволяющий свету увеличивать свою энергию. Мы знаем, что свет не может повысить скорость, поскольку уже перемещается с универсальной предельной скоростью, однако может увеличить частоту. Помните: свет можно рассматривать как волновое движение – серию пиков и впадин, напоминающих волны, распространяющиеся на поверхности пруда от брошенного камня. Частота таких волн – это просто количество пиков (или впадин), проходящих через конкретную точку каждую секунду, а пики и впадины можно использовать в качестве тактового сигнала часов. В частности, представьте, что в ходе эксперимента Паунд находится рядом с источником света на крыше башни.

Он может подсчитать, сколько пиков световой волны приходится на один удар его сердца. Теперь предположим, что Ребка также находится рядом с аналогичным источником света. Он тоже может подсчитать, какое количество пиков волны соответствует одному удару его сердца. Ответ Ребки должен совпадать с ответом его коллеги, так как у них идентичные источники света и идентичные сердца. Конечно, они получат абсолютно одинаковые показатели только в том случае, если у них одинаковые сердца, а это не так. Но допустим, что их сердца действительно бьются как одно. Теперь представьте, что Ребка, сидя в подвале, наблюдает за тем, как прибывает свет, выпущенный из источника света Паунда, расположенного на крыше. Свет увеличил свою энергию, а значит, повысилась его частота, и Ребка обнаружит, что пики световых волн прибывают чаще, чем в случае, когда их испускает расположенный рядом источник света. Однако эти пики синхронизированы с частотой пульса его коллеги. Это означает, что в восприятии сидящего в подвале Ребки сердце Паунда бьется чаще, а следовательно, он будет стареть быстрее. Это крохотный эффект, соответствующий ускорению времени на одну секунду за 13 миллионов лет. Следует отдать должное мастерству и изобретательности Паунда и Ребки, которым удалось разработать эксперимент, способный зафиксировать данный эффект. Именно такое ускорение времени происходит в часах, расположенных на спутниках системы GPS. Эти часы размещены гораздо выше, чем 22,5 метра в лаборатории Гарвардского университета, но основная идея та же: в более слабом гравитационном поле часы идут быстрее.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Почему Е=mc²? И почему это должно нас волновать»

Представляем Вашему вниманию похожие книги на «Почему Е=mc²? И почему это должно нас волновать» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Почему Е=mc²? И почему это должно нас волновать»

Обсуждение, отзывы о книге «Почему Е=mc²? И почему это должно нас волновать» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x