• Пожаловаться

Ричард Фейнман: 8a. Квантовая механика I

Здесь есть возможность читать онлайн «Ричард Фейнман: 8a. Квантовая механика I» весь текст электронной книги совершенно бесплатно (целиком полную версию). В некоторых случаях присутствует краткое содержание. категория: Физика / на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале. Библиотека «Либ Кат» — LibCat.ru создана для любителей полистать хорошую книжку и предлагает широкий выбор жанров:

любовные романы фантастика и фэнтези приключения детективы и триллеры эротика документальные научные юмористические анекдоты о бизнесе проза детские сказки о религиии новинки православные старинные про компьютеры программирование на английском домоводство поэзия

Выбрав категорию по душе Вы сможете найти действительно стоящие книги и насладиться погружением в мир воображения, прочувствовать переживания героев или узнать для себя что-то новое, совершить внутреннее открытие. Подробная информация для ознакомления по текущему запросу представлена ниже:

libcat.ru: книга без обложки

8a. Квантовая механика I: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «8a. Квантовая механика I»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Ричард Фейнман: другие книги автора


Кто написал 8a. Квантовая механика I? Узнайте фамилию, как зовут автора книги и список всех его произведений по сериям.

8a. Квантовая механика I — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «8a. Квантовая механика I», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

Хотелось бы обратить ваше внимание, в частности, на то, что происходит в очень слабых магнитных полях. Имеется одна энергия ( -3А ) , которая не изменяется при включении слабого магнитного поля. И имеется другая энергия ( ) , которая при включении слабого магнитного поля расщепляется на три различных уровня энергии. В слабых полях энергии с ростом В меняются так, как показано на фиг. 10.5. Допустим, что у нас есть каким-то образом отобранное множество атомов водорода, у которых у всех энергия равна - 3А. Если пропу­стить их через прибор Штерна — Герлаха (с не очень сильными полями), то мы найдем, что они просто проходят целиком на­сквозь. (Поскольку их энергия не зависит от В, то, согласно принципу виртуальной работы, градиент магнитного поля не создает никакой силы, которая бы ощущалась ими.) Пусть, с другой стороны, мы бы отобрали группку атомов с энергией + А и пропустили их через прибор Штерна — Герлаха, скажем через прибор S. (Опять поля в приборе не должны быть столь сильными, чтобы разрушить внутренность атома; подразуме­вается, что поля малы настолько, что энергии можно считать линейно зависящими от В.) Мы бы получили три пучка. На состояния | I > и | II > действуют противоположные силы, их энергии меняются по В линейно с наклоном ±m, так что силы сходны с силами, действующими на диполь, у которого m z= ±m , а состояние | III > проходит насквозь. Мы опять возвращаемся к гл. 3. Атом водорода с энергией +А — это частица со спином 1. Это энергетическое состояние является «частицей», для которой j =1, и может быть описано (по отношению к некоторой системе осей в пространстве) в терминах базисных состояний |+ S >, | 0 S > и |- S > , которыми мы пользовались в гл. 3. С другой стороны, когда атом водорода имеет энергию -3 А, он является частицей со спином нуль. (Напоминаем, что все сказанное, строго говоря, справедливо лишь для бесконечно малых магнит­ных полей.) Итак, состояния водорода в нулевом магнитном поле можно сгруппировать следующим образом:

В гл 35 вып 7 мы говорили что у всякой частицы компоненты момента - фото 392

В гл. 35 (вып. 7) мы говорили, что у всякой частицы компо­ненты момента количества движения вдоль любой оси могут принимать только определенные значения, всегда отличаю­щиеся на h. Так, z-компонента момента количества движения Jz может быть равна jh, (j-1) h, (j- 2) h ,..., (- j ) h , где j — спин частицы (который может быть целым или полу­целым). Обыкновенно пишут

Jz=mh, (10.43)

где т стоит вместо любого из чисел j , j -1, j- 2, . . ., -j (в свое время мы не сказали об этом). Вы поэтому часто встре­тите в книжках нумерацию четырех основных состояний при помощи так называемых квантовых чисел j и m [часто именуе­мых «квантовым числом полного момента количества движения» ( j ) и «магнитным квантовым числом» (m)]. Вместо наших сим­волов состояний | I >, | II > и т. д. многие часто пишут состоя­ния в виде | j , m > . Нашу табличку состояний для нулевого поля в (10.41) и (10.42) они бы изобразили в виде табл. 10.3. Здесь нет какой-либо новой физики, это просто вопрос обозначении.

Таблица 10.3 · СОСТОЯНИЯ АТОМА ВОДОРОДА В НУЛЕВОМ ПОЛЕ

6 Проекционная матрица для спина 1 Теперь мы хотели бы применить наши - фото 393

§ 6. Проекционная матрица для спина 1

Теперь мы хотели бы применить наши знания об атоме водо­рода к одной специальной задаче. В гл. 3 мы говорили о том, что частица со спином 1, находящаяся в одном из базисных со­стояний (+, 0, -) по отношению к прибору Штерна — Герлаха с какой-то частной ориентацией (скажем, по отношению к при­бору S), будет иметь определенную амплитуду пребывания в одном из трех состояний по отношению к прибору Т, ориенти­рованному в пространстве по-другому. Имеются девять таких амплитуд < jT|iS > , которые вместе образуют проекционную матрицу. В гл. 3, § 7, мы без доказательства выписали элементы этой матрицы для различных ориентации Т по отношению к S. Теперь мы хотим показать вам один из способов их вывода.

В атоме водорода мы с вами отыскали систему со спином 1, составленную из двух частиц со спином 1/ 2. В гл. 4 мы уже научились преобразовывать амплитуды для спина 1/ 2. Эти зна­ния можно применить к тому, чтобы получить преобразование для спина 1. Вот как это делается: имеется система (атом водо­рода с энергией + А) со спином 1. Пусть мы пропустили ее сквозь фильтр S Штерна — Герлаха так, что знаем теперь, что она находится в одном из базисных состояний по отношению к S, скажем в |+ S ). Какова амплитуда того, что она окажется в одном из базисных состояний, скажем |+ T ), по отношению к прибору Т? Если вы назовете систему координат прибора S системой х, у, z, то состояние |+ S > это то, что недавно назы­валось состоянием |+ +>. Но представьте, что какой-то ваш приятель провел свою ось z вдоль оси Т. Он свои состояния будет относить к некоторой системе х', у', z'. Его состояния «вверх» и «вниз» для электрона и протона отличались бы от ваших. Его состояние «плюс — плюс», которое можно записать | +'+'>, отмечая «штрихованность» системы, есть состояние |+ Т > частицы со спином 1. А вас интересует <+ T |+ S >, что есть просто иной способ записи амплитуды <+'+' | + + >.

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «8a. Квантовая механика I»

Представляем Вашему вниманию похожие книги на «8a. Квантовая механика I» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё не прочитанные произведения.


Отзывы о книге «8a. Квантовая механика I»

Обсуждение, отзывы о книге «8a. Квантовая механика I» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.