Ричард Фейнман - 8. Квантовая механика I

Здесь есть возможность читать онлайн «Ричард Фейнман - 8. Квантовая механика I» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

8. Квантовая механика I: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «8. Квантовая механика I»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

8. Квантовая механика I — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «8. Квантовая механика I», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

8 Квантовая механика I - изображение 291

При этом распаде оказывается, что (по крайней мере при высо­ких энергиях) электроны испускаются преимущественно в на­правлении, противоположном направлению спина мюона.

Допустим затем, что имеется экспериментальное устройство (фиг. 5.9): поляризованные мюоны входят слева и в блоке ве­щества А останавливаются, а чуть позже распадаются.

Фиг 59 Опыт с распадом мюона Испускаемые электроны выходят вообще - фото 292

Фиг. . 5.9. Опыт с распадом мюона.

Испу­скаемые электроны выходят, вообще говоря, во всех мыслимых направлениях. Представим, однако, что все мюоны будут вхо­дить в тормозящий блок А так, что их спины будут повернуты в направлении х. Без магнитного поля там наблюдалось бы какое-то угловое распределение направлений распада; мы же хотим знать, как изменилось бы это распределение при наличии магнитного поля. Можно ожидать, что оно как-то будет меняться со временем. То, что получится, можно узнать, спросив, ка­кой будет в каждый момент амплитуда того, что мюон обнару­жится в состоянии (+ x ).

Эту задачу можно сформулировать следующим образом: пусть известно, что в момент t=0 спин мюона направлен по + х ; какова амплитуда того, что в момент т он окажется в том же состоянии? И хотя мы не знаем правил поведения частицы со спином 1/ 2в магнитном поле, перпендикулярном к спину, но зато мы знаем, что бывает с состояниями, когда спины на­правлены вверх или вниз по полю,— тогда их амплитуды ум­ножаются на выражение (5.34). Наша процедура тогда будет состоять в том, чтобы выбрать представление, в котором ба­зисные состояния — это направления спином вверх или спи­ном вниз относительно z (относительно направления поля). И любой вопрос тогда сможет быть выражен через амплитуды этих состояний.

Пусть |y(t)> представляет состояние мюона. Когда он вхо­дит в блок А, его состояние есть |y (0)>, а мы. хотим знать |y (t)> в более позднее время t. Если два базисных состояния обозначить (+z) и (-z), то нам известны амплитуды <+z|y (0)> и <-z|y (0)> — они известны потому, что мы знаем, что |y (0)> представляет собой состояние со спином в направлении (+ x ). Из предыдущей главы следует, что эти амплитуды равны

Они оказываются одинаковыми Раз они относятся к положению при t0 обозначим - фото 293

Они оказываются одинаковыми. Раз они относятся к положе­нию при t=0, обозначим их С +(0) и С -(0).

Далее, мы знаем, что из этих двух амплитуд получится со временем. Из (5.34) следует

Но если нам известны C t и C t то у нас есть все чтобы знать условия - фото 294

Но если нам известны C + (t) и C - (t), то у нас есть все, чтобы знать условия в момент t. Надо преодолеть только еще одно затруднение: нужна-то нам вероятность того, что спин (в мо­мент t )окажется направленным по + х. Но наши общие пра­вила учитывают и эту задачу. Мы пишем, что амплитуда пре­бывания в состоянии (+x) в момент t [обозначим ее A + ( t )]есть

8 Квантовая механика I - изображение 295

или

8 Квантовая механика I - изображение 296

Опять пользуясь результатом последней главы (или лучше равенством

8 Квантовая механика I - изображение 297* из гл. 3), мы пишем

Итак в 537 все известно Мы получаем или Поразительно простой - фото 298

Итак, в (5.37) все известно. Мы получаем

или Поразительно простой результат Заметьте ответ согласуется с тем - фото 299

или

Поразительно простой результат Заметьте ответ согласуется с тем что - фото 300

Поразительно простой результат! Заметьте: ответ согласуется с тем, что ожидалось при t= 0 . Мы получаем А + (0) = 1 , и это вполне правильно, потому что сперва и было предположено, что при t =0 мюон был в состоянии (+ x ).

Вероятность Р + того, что мюон окажется в состоянии (+х) в момент t, есть +) 2, т. е.

8 Квантовая механика I - изображение 301

Вероятность колеблется от нуля до единицы, как показано на фиг. 5.10.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «8. Квантовая механика I»

Представляем Вашему вниманию похожие книги на «8. Квантовая механика I» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Александр Львовский - Отличная квантовая механика
Александр Львовский
Отзывы о книге «8. Квантовая механика I»

Обсуждение, отзывы о книге «8. Квантовая механика I» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x