Ричард Фейнман - 8. Квантовая механика I

Здесь есть возможность читать онлайн «Ричард Фейнман - 8. Квантовая механика I» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

8. Квантовая механика I: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «8. Квантовая механика I»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

8. Квантовая механика I — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «8. Квантовая механика I», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Фиг. 5.6. Потенциал a-частицы в ядре урана (а) и качественный вид амплитуды вероятности (б).

Если бы попытаться выстрелить a-частицей с энергией Е в ядро, то она почувство­вала бы электростатическое отталкивание от ядерного заряда z и по классическим канонам не подошла бы к ядру ближе, чем на такое расстояние r 1при котором ее полная энергия срав­няется с потенциальной V. Но где-то внутри ядра потенциаль­ная энергия окажется намного ниже из-за сильного притяжения короткодействующих ядерных сил. Как же тогда объяс­нить, отчего при радиоактивном распаде мы обнаруживаем a-частицы, которые, первоначально находясь внутри ядра, оказываются затем снаружи него с энергией Е ?Потому что они. с самого начала обладая энергией E , «просочились» сквозь потенциальный барьер. Схематичный набросок амплитуды ве­роятности дан на фиг. 5.6, б, хотя на самом деле экспоненци­альный спад много сильнее, чем показано. Весьма примеча­тельно, что среднее время жизни a-частицы в ядре урана до­стигает 4 1/ 2миллиарда лет, тогда как естественные колебания внутри ядра чрезвычайно быстры, их в секунду бывает 10 22! Как же можно из 10 -2 2 сек получить число порядка 10 9лет? Ответ состоит в том, что экспонента дает неслыханно малый множитель порядка 10 -4 5, что и приводит к очень малой, хоть и вполне определенной, вероятности просачивания. Если уж a-частица попала в ядро, то почти нет никакой амплитуды об­наружить ее не в ядре; если, однако, взять таких ядер побольше и подождать подольше, то вам, может быть, повезет и вы уви­дите, как частица выскочит наружу.

§ 4. Силы; классический предел

Предположим, что частица движется сквозь область, где есть потенциал, меняющийся поперек движения. Классически мы бы описали этот случай так, как показано на фиг. 5.7.

Фиг 57 Отклонение частицы поперечным градиентом потенциала Если частица - фото 275

Фиг. 5.7. Отклонение частицы поперечным градиентом потенциала.

Если частица движется в направлении х и вступает в область, где имеется потенциал, изменяющийся вдоль y , то частица полу­чит поперечное ускорение от силы F=-дV/дy. Если сила при­сутствует только в ограниченной области шириной w, то она будет действовать только в течение времени w/v. Частица получит поперечный импульс

p y = Fw/v

Тогда угол отклонения dq будет равен

8 Квантовая механика I - изображение 276

где р — начальный импульс. Подставляя вместо F число - дV/дy, получаем

Теперь нам предстоит выяснить удастся ли получить этот результат с помощью - фото 277

Теперь нам предстоит выяснить, удастся ли получить этот результат с помощью представления о том, что волны подчи­няются уравнению (5.20). Мы рассмотрим то же самое явление квантовомеханически, предполагая, что все масштабы в нем намного превосходят длины волн наших амплитуд вероятности. В любой маленькой области можно считать, что амплитуда ме­няется как

В состоянии ли мы увидеть как отсюда получится отклонение частиц когда у V - фото 278

В состоянии ли мы увидеть, как отсюда получится отклонение частиц, когда у V будет поперечный градиент? На фиг. 5.8 мы прикинули, как будут выглядеть волны амплитуды вероят­ности.

Фиг 58 Амплитуда вероятности в области с поперечным градиентом потенциала - фото 279

Фиг. 5.8. Амплитуда вероятности в области с поперечным градиентом потенциала.

Мы начертили ряд «узлов волн», которые вы можете считать, скажем, поверхностями, где фаза амплитуды равна нулю. В любой небольшой области длина волны (расстояние между соседними узлами) равна

8 Квантовая механика I - изображение 280

где р связано с V формулой

В области где V больше там р меньше а волны длиннее Поэтому направление - фото 281

В области, где V больше, там р меньше, а волны длиннее. По­этому направление линий узлов волн постепенно меняется, как показано на рисунке.

Чтобы найти изменение наклона линий узлов волн, заме­тим, что на двух путях а и b имеется разность потенциалов D V=(дV/дy)D, а значит, и разница D р между импульсами. Эту разность можно получить из (5.28):

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «8. Квантовая механика I»

Представляем Вашему вниманию похожие книги на «8. Квантовая механика I» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Александр Львовский - Отличная квантовая механика
Александр Львовский
Отзывы о книге «8. Квантовая механика I»

Обсуждение, отзывы о книге «8. Квантовая механика I» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x