
Таким же способом мы придем к выводу, что частица b (когда она одна) рассеивается в элемент площади dS 2с вероятностью

(Мы говорим d S 2, а не dS 1в расчете на то, что позже частицам а и b будет разрешено двигаться в разных направлениях.) Опять положим b 2равным постоянной амплитуде b ; тогда вероятность того, что частица b будет зарегистрирована счетчиком, равна

Когда же имеются две частицы, то вероятность рассеяния а в dS 1и b в dS 2будет

Если нам нужна вероятность того, что обе частицы (и а, и b) попали в счетчик, мы должны будем проинтегрировать dS 1и dS 2по всей площади D S; получится

Заметим, кстати, что это равно просто р а ·р b вточности так, как если бы мы предположили, что частицы а и b действуют независимо друг от друга.
Однако, когда две частицы тождественны, имеются две неразличимые возможности для каждой пары элементов поверхности dS 1и dS 2 . Частица а, попадающая в dS 2 , и частица b, попадающая в dS 1 , неотличимы от а в dS 1и от b в dS 2 , так что амплитуды этих процессов будут интерферировать. (Когда у нас были две различные частицы, то, хотя мы на самом деле не заботились о том, какая из них куда попадает в счетчике, мы все же в принципе могли это узнать; так что интерференции не было. А для тождественных частиц мы и в принципе не можем этого сделать.) Мы должны тогда написать, что вероятность того, что пара частиц очутится в dS 1и dS 2 , есть

Однако сейчас, интегрируя по поверхности счетчика, нужно быть осторожным. Пустив dS 1и dS 2странствовать по всей площади D S , мы бы сосчитали каждую часть площади дважды, поскольку в (2.13) входит все, что может случиться с каждой парой элементов поверхности dS 1и dS 2 . Но интеграл можно все равно подсчитать, если учесть двукратный счет, разделив результат пополам. Тогда мы получим, что Р 2для тождественных бозе-частиц есть

И опять это ровно вдвое больше того, что мы получили в (2.12) для различимых частиц.
Если вообразить на мгновение, что мы откуда-то знали, что канал b уже послал свою частицу в своем направлении, то можно сказать, что вероятность того, что вторая частица направится в ту же сторону, вдвое больше того, чего можно было бы ожидать, если бы мы посчитали это событие независимым. Таково уж свойство бозе-частиц. что если есть одна частица в каких-то условиях, то вероятность поставить в те же условия вторую вдвое больше, чем если бы первой там не было. Этот факт часто формулируют так: если уже имеется одна бозе-частица в данном состоянии, то амплитуда того, что туда же, ей на голову, можно будет поместить вторую, в Ц2 раз больше, чем если бы первой там не было. (Это неподходящий способ формулировать результат с той физической точки зрения, какую мы избрали, но, если это правило последовательно применять, оно все же приводит к верному результату.)
§ 3. Состояния с n бозе-частицами
Распространим наш результат на тот случай, когда имеются n частиц. Вообразим случай, изображенный на фиг. 2.4.

Фиг. 2.4. Рассеяние n частиц в близкие конечные состояния.
Есть n частиц а, b, с, . . . , которые рассеиваются в направлениях 1, 2, 3, . . . , п. Все n направлений смотрят в небольшой счетчик, который стоит где-то поодаль. Как и в предыдущем параграфе, выберем нормировку всех амплитуд так, чтобы вероятность того, что каждая частица, действуя по отдельности, попадет в элемент поверхности dS счетчика, была равна
Читать дальше