Ричард Фейнман - 7. Физика сплошных сред
Здесь есть возможность читать онлайн «Ричард Фейнман - 7. Физика сплошных сред» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:7. Физика сплошных сред
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:4 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
- 80
- 1
- 2
- 3
- 4
- 5
7. Физика сплошных сред: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «7. Физика сплошных сред»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
7. Физика сплошных сред — читать онлайн бесплатно полную книгу (весь текст) целиком
Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «7. Физика сплошных сред», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.
Интервал:
Закладка:
В конечном счете при достаточно сильных полях, когда все доменные стенки сдвинуты и намагниченность каждого кристаллика направлена по ближайшей к полю оси легкого намагничивания, остаются еще некоторые кристаллики, у которых ось легкого намагничивания далека от направления внешнего магнитного поля. Чтобы повернуть эти магнитные моменты, требуется еще дополнительное поле. Таким образом, в сильных полях именно в области, обозначенной на фиг. 37.10 буквой с, намагниченность возрастает медленно, но гладко.
Фиг. 37.10. Кривая намагничивания поликристаллического железа.
Намагниченность не сразу достигает своего насыщения, ибо в этой последней части кривой происходит доворачивание атомных магнитиков в сильном поле. Таким образом, мы видим, почему кривая намагничивания поликристаллического материала обычно имеет вид, изображенный на фиг. 37.10: сначала она немного возрастает и это возрастание обратимо, затем возрастает быстро, но уже необратимо, а потом медленно загибается. Разумеется, между этими тремя областями никакого резкого перехода нет— они плавно переходят одна в другую.
Нетрудно убедиться в том, что процесс намагничивания в средней части кривой носит скачкообразный характер, что доменные стенки при сдвиге прыгают и даже щелкают. Для этого нам нужна только катушка со многими тысячами витков провода, связанная через усилитель с громкоговорителем (фиг. 37.11).
Фиг. 37.11. Скачкообразные изменения намагниченности листков кремнистой стали сопровождаются щелчками в громкоговорителе.
Если внутрь катушки поместить несколько листков кремнистой стали (такого же сорта, как и в трансформаторах) и медленно подносить к этой пачке постоянный магнит, то скачкообразные изменения намагниченности будут создавать в катушке импульсы э. д. с., которые в громкоговорителе будут слышны как отдельные щелчки. По мере приближения магнита к железу на вас обрушится целый град щелчков, напоминающий шум, создаваемый падающими друг на друга песчинками, высыпающимися из наклоненной жестянки. Это прыгают, покачиваются и щелкают доменные стенки по мере увеличения магнитного поля. Это явление называется эффектом Баркгаузена.
По мере приближения магнита к железным листикам шум некоторое время будет все возрастать, но когда магнит окажется совсем близко, шум начинает затихать. Почему? Да потому, что все доменные стенки передвинулись уже насколько возможно и теперь любое увеличение поля просто поворачивает векторы намагниченности в каждом из доменов, а это уже вполне плавный процесс.
Если вы теперь будете плавно отодвигать магнит так, чтобы вернуться назад по нижней петле гистерезиса, то все домены будут тоже стремиться вернуться назад в положение низшей энергии и вы снова услышите град щелчков. Обратите внимание, что если вы отодвинете магнит до какого-то определенного положения, а затем начнете немного двигать магнит взад и вперед, звук будет относительно слабым. Это снова напоминает поведение наклоненной жестянки с песком: когда песчинки «осели» на свое место, небольшой наклон жестянки уже не потревожит их. Небольшое изменение магнитного поля в железе неспособно заставить доменную стенку перескочить через «горб».
§ 4. Ферромагнитные материалы
Сейчас было бы хорошо рассказать о различных сортах магнитных материалов, применяемых в технике, и о некоторых проблемах, связанных с созданием магнитных материалов для разных целей. Прежде всего о самом термине «магнитные свойства железа», который часто приходится слышать. Он, строго говоря, не имеет смысла и способен ввести в заблуждение: «железо» как строго определенный материал не существует. Свойства железа существенно зависят от количества примесей, а также от способа его приготовления. Вы понимаете, что магнитные свойства будут зависеть от того, насколько легко движутся доменные стенки, именно это свойство будет определяющим, а совсем не то, как ведут себя отдельные атомы. Так что практически ферромагнетизм не является свойством атомов железа: это свойство куска железа в определенном состоянии. Железо, например, может находиться в двух различных кристаллических формах. Обычная форма имеет объемноцентрированную кубическую решетку, но может еще иметь и гранецентрированную решетку, которая, однако, стабильна только при температурах выше 1100°С. При этих температурах, разумеется, железо уже прошло точку Кюри. Однако, сплавляя с железом хром и никель (один из возможных составов содержит 18% хрома и 8% никеля), мы можем получить то, что называется нержавеющей сталью; хотя она и состоит главным образом из железа, но сохраняет гранецентрированную решетку даже при низких температурах. Благодаря своей кристаллической структуре этот материал обладает совершенно другими магнитными свойствами. Обычно нержавеющая сталь немагнитна в сколько-нибудь заметной степени, хотя есть сорта с другим составом сплава, которые в какой-то степени магнитны. Хотя такой сплав, как любое вещество, является магнетиком, он не ферро магнетик, как обычное железо, несмотря на то, что в основном он все же состоит из железа.
Читать дальшеИнтервал:
Закладка:
Похожие книги на «7. Физика сплошных сред»
Представляем Вашему вниманию похожие книги на «7. Физика сплошных сред» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.
Обсуждение, отзывы о книге «7. Физика сплошных сред» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.