Ричард Фейнман - 7. Физика сплошных сред

Здесь есть возможность читать онлайн «Ричард Фейнман - 7. Физика сплошных сред» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

7. Физика сплошных сред: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «7. Физика сплошных сред»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

7. Физика сплошных сред — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «7. Физика сплошных сред», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В предыдущей главе мы обнаружили, что ферромагнитные материалы обладают следующим интересным свойством: при температурах выше некоторой их магнитные свойства проявля­ются слабо и лишь ниже этой температуры они становятся сильными магнетиками. Этот факт легко продемонстрировать. Кусок никелевого провода при комнатной температуре притя­гивается магнитом. Но если мы его нагреем в пламени газовой горелки выше температуры Кюри, то он станет практически немагнитным и не будет притягиваться к магниту, даже если мы поднесем его совсем близко. Если же оставить его остывать возле магнита, то в тот момент, когда его температура упадет ниже критической, он внезапно снова притянется к магниту!

В общей теории магнетизма, которой мы пользуемся, пред­полагается, что за намагниченность ответствен спин электрона. Спин электрона равен 1/ 2и сопровождается магнитным момен­том, равным одному магнетону Бора: (m=m b =q e h/2m. Спин электрона может быть направлен либо вверх, либо вниз. Поскольку заряд электрона отрицателен, то магнитный момент его направлен вниз, когда спин направлен вверх, и направлен вверх, когда спин направлен вниз. В соответствии с нашим обычным соглашением магнитный момент электрона (А — число отрицательное. Мы нашли, что потенциальная энергия магнит­ного диполя в заданном приложенном поле Вравна— m· B. Энергия вращающегося электрона зависит также и от распо­ложения соседних спинов. Если в железе момент соседнего атома направлен вверх, то момент следующего атома имеет сильную тенденцию тоже направиться вверх. Именно это делает железо, кобальт и никель такими сильными магнети­ками — все моменты атомов в них стремятся быть параллель­ными. И вот первый вопрос, который мы должны обсудить, — почему так происходит?

Вскоре после развития квантовой механики было замечено, что существуют чрезвычайно мощные кажущиеся силы (однако не магнитные и не другие известные силы), которые стараются выстроить спины соседних электронов противоположно один другому. Эти силы тесно связаны с силами химической валент­ности. В квантовой механике есть так называемый принцип запрета, который говорит, что два электрона не могут зани­мать в точности одно и то же состояние, т. е. они не могут нахо­диться в тех же самых условиях в смысле положения и ориен­тации спина. Если два электрона находятся в одном и том же месте, то единственной возможностью им различаться будет только противоположное направление их спинов. Таким об­разом, если между атомами имеется область пространства, где скапливаются электроны(так происходит при химической связи), и если на сидящий уже там электрон нам захочется посадить другой, то единственный способ это сделать — направить спин второго электрона противоположно спину первого. Параллель­ность спинов противоречит принципу запрета, если, конечно, электроны расположены в одной точке. В результате пара близ­ких друг к другу электронов с параллельными спинами обла­дает гораздо большей энергией, нежели пара электронов с про­тивоположными спинами; в целом же эффект будет таким, как будто действует сила, старающаяся развернуть спины противо­положно друг другу. Иногда такие «спин-вращающие» силы на­зываются обменными, но это название только увеличивает таин­ственность, так что термин этот не слишком удачен. Стремление электронов иметь противоположные спины обязано просто принципу запрета. Но фактически это объясняет отсутствие магнетизма почти у всех веществ! Спины свободных электронов на окраине атомов стремятся уравновешиваться в противопо­ложных направлениях. Проблема заключается в том, чтобы объяснить, почему же материалы, подобные железу, ведут себя совсем не так, как ожидается.

Предполагаемый эффект выстраивания мы учитывали добав­лением в выражение для энергии подходящего слагаемого, приговаривая, что если соседние электронные магнитики дают среднюю намагниченность М, то магнитный момент электрона имеет сильную тенденцию смотреть в том же самом направлении, что и средняя намагниченность соседних атомов. Таким обра­зом, для двух возможных ориентации спинов можно написать:

Когда стало ясно что квантовая механика может объяснить нам огромные - фото 274

Когда стало ясно, что квантовая механика может объяснить нам огромные спин-ориентирующие силы, пусть даже с очевид­но неправильным знаком, то было предложено, что ферромаг­нетизм возникает именно за счет этих сил, но что вследствие сложности железа и большого числа участвующих в игре элект­ронов знак энергии электронов получается обратным. Как толь­ко это стало ясно, т. е. примерно с 1927 г., когда была понята квантовая механика, многие исследователи стали делать разные оценки, прикидки, полуподсчеты, стремясь получить тео­ретически величину К. Но все равно наиболее поздние вычисле­ния энергии взаимодействия между двумя электронными спи­нами в железе, предполагавшие прямое взаимодействие между двумя электронами в соседних атомах, дали неправильный знак. Сейчас, описывая это явление, говорят, что за все как-то ответ­ственна сложность ситуации и что есть надежда, что кому-то, кто сумеет проделать вычисления для более сложного случая, удастся получить правильный ответ!

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «7. Физика сплошных сред»

Представляем Вашему вниманию похожие книги на «7. Физика сплошных сред» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «7. Физика сплошных сред»

Обсуждение, отзывы о книге «7. Физика сплошных сред» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x