В гл. 31 (вып. 3) мы предполагали, что центр электронного заряда атома, помещенного в осциллирующее электрическое поле, подчиняется уравнению

(11.2)
Первый член — это произведение массы электрона на его ускорение, а второй — возвращающая сила; справа стоит сила, действующая со стороны внешнего электрического поля. Если электрическое поле меняется с частотой w, то уравнение (11.2)

допускает решение
(11.3)
имеющее резонанс при w=w 0. Когда раньше мы нашли это решение, то интерпретировали w 0как частоту, при которой атом поглощает свет (она лежит либо в оптической, либо в ультрафиолетовой области, в зависимости от атома). Для нашей цели, однако, достаточно случая постоянных полей, т.е. w=0; поэтому мы можем пренебречь членом с ускорением в (11.2) и получаем смещение

(11.4)

Отсюда находим дипольный момент р одного атома
(11.5)
В таком подходе дипольный момент р действительно пропорционален электрическому полю. Обычно пишут

(11.6)
(Снова e 0вошло по историческим причинам.) Постоянная a называется поляризуемостью атома и имеет размерность L 3. Это мера того, насколько легко индуцировать электрическим полем дипольный момент у атома. Сравнивая

(11.5) и (11.6), получаем, что в нашей простой теории
(11.7)

Если в единице объема содержится N атомов, то поляризация (дипольный момент единицы объема) дается формулой
(11.8)

Объединяя (11.1) и (11.8), получаем
(11.9)
или в силу (11.7)

(11.10)
С помощью уравнения (11.9) можно предсказать, что диэлектрическая проницаемость х различных газов должна зависеть от плотности газа и от резонансной частоты w 0.
Наша формула, конечно, лишь очень грубое приближение, потому что в уравнении (11.2) мы воспользовались моделью, игнорирующей тонкости квантовой механики. Например, мы считали, что атом имеет только одну резонансную частоту, тогда как на самом деле их много. Чтобы по-настоящему вычислить поляризуемость атомов, нужно воспользоваться последовательной квантовомеханической теорией, однако и классический подход, изложенный выше, дает вполне разумную оценку.
Посмотрим, сможем ли мы получить правильный порядок величины диэлектрической проницаемости какого-нибудь вещества. Возьмем, к примеру, водород. Мы уже оценивали (вып. 4, гл. 38) энергию, необходимую для ионизации атома водорода, и получили приближенно

(11.11)
Для оценки собственной частоты w 0можно положить эту энергию равной ћw 0— энергии атомного осциллятора с собственной частотой w 0. Получаем


Пользуясь этой величиной в уравнении (11.7), находим электронную поляризуемость
(11.12)
Величина (h 2 /me z ) есть радиус основной орбиты атома Бора (см. вып. 4, гл. 38), равный 0,528 А. При нормальном давлении и температуре (1 атм, 0°С) в газе на 1 см 3 приходится 2,69·10 19атомов, и уравнение (11.9) дает
c= 1+ (2,69·10 19) 16p (0,528·10 -8) 3= 1,00020. (11.13) Измеренная на опыте диэлектрическая проницаемость равна
c эксп= 1,00026.
Видите, наша теория почти правильна. Лучшего нельзя было и ожидать, потому что измерения проводились, конечно, с обычным водородом, обладающим двухатомными молекулами, а не одиночными атомами. Не следует удивляться тому, что поляризация атомов в молекуле не совсем такая, как поляризация отдельных атомов. На самом деле молекулярный эффект не столь велик. Точное квантовомеханическое вычисление величины a для атомов водорода дает результат, превышающий (11.12) примерно на 12% (вместо 16p получается 18p), поэтому он предсказывает для диэлектрической проницаемости значение, более близкое к наблюденному. Во всяком случае, совершенно очевидно, что наша модель диэлектрика вполне хороша.
Читать дальше