Ричард Фейнман - 4a. Кинетика. Теплота. Звук

Здесь есть возможность читать онлайн «Ричард Фейнман - 4a. Кинетика. Теплота. Звук» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

4a. Кинетика. Теплота. Звук: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «4a. Кинетика. Теплота. Звук»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

4a. Кинетика. Теплота. Звук — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «4a. Кинетика. Теплота. Звук», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Рассмотрим еще один необычайно интересный пример фазовой скорости Он - фото 30

Рассмотрим еще один необычайно интересный пример фа­зовой скорости. Он относится к области квантовой механики. Известно, что амплитуда вероятности найти частицу в данном месте изменяется при некоторых обстоятельствах в пространстве и времени (давайте возьмем одно измерение) следующим обра­зом:

где w частота связанная с классической энергией Eh w a k волновое - фото 31

где w — частота, связанная с классической энергией, E=h w , a k — волновое число, которое связано с импульсом соотно­шением р=hk. Мы говорим, что частица имеет определенный импульс р, если волновое число в точности равно k, т. е. если бежит идеальная волна повсюду с одинаковой амплитудой. Выражение (48.19) дает амплитуду вероятности, но если мы возьмем квадрат абсолютной величины, то получим относитель­ную вероятность обнаружения частицы как функцию поло­жения и времени. В данном случае она равна постоянной, что означает вероятность обнаружить частицу в любом месте, Рассмотрим теперь такой случай, когда известно, что обна­ружить частицу в каком-то месте более вероятно, чем в других местах. Подобную картину мы описываем волной, которая имеет максимум в данном месте и сходит на нет по мере удале­ния в стороны (фиг. 48.6).

Фиг. 48.6. Локализованный волновой пакет,

(Это не то же самое, что изображено на фиг. 48.1, где волна имеет целый ряд максимумов, но сними вполне можно расправиться, сложив несколько волн с при­близительно одинаковыми значениями w и k. Таким способом можно избавиться от всех максимумов, кроме одного.)

При этих обстоятельствах, поскольку квадрат выражения (48.19) представляет вероятность найти частицу в некотором месте, мы знаем, что в данный момент больше шансов найти ча­стицу вблизи центра «колокола», где амплитуда максимальна.

Если подождать немного, то волна передвинется, и по проше­ствии некоторого промежутка времени «колокол» перейдет в какое-то другое место. Зная, что частица вначале где-то была расположена, мы ожидали бы, согласно классической меха­нике, что она будет где-то и позднее, ведь есть же у нее ско­рость и импульс в конце концов. При этом квантовая теория дает в пределе правильные классические соотношения между энергией, импульсом и скоростью, если только групповая ско­рость, скорость модуляции, будет равна скорости классиче­ской частицы с тем же самым импульсом.

Сейчас необходимо показать так ли это на самом деле или нет Согласно - фото 32

Сейчас необходимо показать, так ли это на самом деле или нет. Согласно классической теории, энергия связана со ско­ростью уравнением

Точно таким же образом импульс равен Как следствие отсюда после исключения v - фото 33

Точно таким же образом импульс равен

Как следствие отсюда после исключения v получается

E 2-р 2c 2=m 2c 4,

т е р m р m m 2 Это величайший результат четырехмерья о котором мы уже - фото 34

т. е. р m р m =m 2 . Это величайший результат четырехмерья, о котором мы уже говорили много раз, устанавливающий связь между энергией и импульсом в классической теории. Теперь же, поскольку мы собираемся заменить E и p на w и k помощью подстановки Е=hp=hk, он означает, что в квантовой меха­нике должна существовать связь

Таким образом, возникло соотношение между частотой и вол­новым числом квантовомеханической амплитуды, описывающей частицу с массой m. Из этого уравнения можно получить

т е фазовая скорость wk снова больше скорости света Рассмотрим теперь - фото 35

т. е. фазовая скорость w/k; снова больше скорости света!

Рассмотрим теперь групповую скорость. Она должна быть равна скорости, с которой движется модуляция, т. е. d w/ dk.

4a Кинетика Теплота Звук - изображение 36

Чтобы найти ее, нужно продифференцировать квадратный корень; это дело нехитрое. Производная равна

4a Кинетика Теплота Звук - изображение 37

Но входящий сюда квадратный корень есть попросту w /с, так что эту формулу можно записать в виде dw/dk=е 2k/w. Далее, так как k/w равно р/Е, то

Но, согласно (48.20) и (48.21), с 2 р/Е равно v — скорости ча­стицы в классической механике. Таким образом видно, что, принимая во внимание основные квантовомеханические соот­ношения E=hp=hk, определяющие w и k через классиче­ские величины Е и р и дающие только уравнение w 2-k 2c 2= =m 2с 4/h 2, теперь можно понять также соотношения (48.20) и (48.21), связывающие Е и р соскоростью. Групповая скорость, разумеется, должна быть скоростью частиц, если эта интер­претация вообще имеет какой-либо смысл. Пусть в какой-то момент, как мы полагаем, частица находится в одном месте, а затем; скажем через 10 минут,— в другом. Тогда, согласно кван­товой механике, расстояние, пройденное «колоколом», разде­ленное на интервал времени, должно равняться классической скорости частицы.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «4a. Кинетика. Теплота. Звук»

Представляем Вашему вниманию похожие книги на «4a. Кинетика. Теплота. Звук» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «4a. Кинетика. Теплота. Звук»

Обсуждение, отзывы о книге «4a. Кинетика. Теплота. Звук» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x