где a=Nq 2 e /2e 0 m — постоянная. Во всяком случае, мы хотим сложить такие две волны, у которых для каждой частоты существует определенное волновое число.
Давайте сделаем это точно так же, как и при получении уравнения (48.7):

Таким образом, снова получается модулированная волна, распространяющаяся со средней частотой и средним волновым числом, однако сила ее меняется в соответствии с выражением, зависящим от разности частот и разности волновых чисел.
Рассмотрим теперь случай, когда разности между двумя волнами относительно малы. Предположим, что мы складываем две волны с приблизительно равными частотами, при этом (w 1+w 2)/2 практически равно каждой из частот w. То же можно сказать и о (k 1+k 2)/2. Таким образом, скорость волны, быстрых осцилляции, узлов действительно остается равной w/k. Но смотрите, скорость распространения модуляций не та же самая! Как нужно изменить х, чтобы сбалансировать некоторую величину времени t? Скорость этих модулирующих волн равна
v M =(w 1-w 2)/(k 1-k 2). (48.16)

Скорость движения модуляций иногда называют групповой скоростью. Если мы возьмем случай относительно малой разности между частотами и соответственно относительно малой разности между волновыми числами, то это выражение переходит в пределе в
Другими словами, чем медленнее модуляции, тем медленнее и биения, и вот что самое удивительное — существует определенная скорость их распространения, которая не равна фазовой скорости волны.
Групповая скорость равна производной со по k, а фазовая скорость равна отношению w /k.
Посмотрим, можно ли понять, почему так происходит. Рассмотрим две волны с несколько различными длинами, как это показано на фиг. 48.1. Они то совпадают по фазе, то различаются, то снова совпадают и т. д. Однако теперь эти волны в действительности представляют волны в пространстве, распространяющиеся с немного различными скоростями. Но поскольку фазовая скорость, скорость узлов этих двух волн, не в точности одинакова, то происходит нечто новое. Предположим, что мы едем рядом с одной из волн и смотрим на другую. Если бы они двигались с одинаковой скоростью, то вторая волна оставалась бы относительно нас там же, где и была с самого начала, поскольку мы едем как бы на гребне одной волны и видим гребень второй прямо около себя. Однако в действительности скорости не равны. Частоты немного отличаются друг от друга, а поэтому немного отличаются и скорости. Из-за этой небольшой разницы в скоростях другая волна либо медленно обгоняет нас, либо отстает. Что же с течением времени происходит с узлом? Если чуть-чуть продвинуть одну из волн, то узел при этом уйдет на значительное расстояние вперед (или назад), т. е. сумма этих двух волн имеет какую-то огибающую, которая вместе с распространением волн скользит по ним с другой скоростью. Групповая скорость является той скоростью, с которой передаются модулирующие сигналы.
Если мы посылаем сигнал, т. е. производим какие-то изменения волны, которые могут быть услышаны и расшифрованы кем-то, то это является своего рода модуляцией, но такая модуляция при условии, что она относительно медленная, будет распространяться с групповой скоростью (быстрые модуляции значительно труднее анализировать).
Теперь мы можем показать (наконец-то!), что скорость распространения рентгеновских лучей в куске угля, например, не больше, чем скорость света, хотя фазовая скорость больше скорости света. Чтобы сделать это, нужно найти соотношение dw/dk, которое мы вычислим дифференцированием формулы

(48.14): dk/dw=1/c+a/(w 2 c). А групповая скорость равна обратной величине, т. е.
что меньше, чем с! Таким образом, хотя фазы могут бежать быстрее скорости света, модулирующие сигналы движутся медленнее, и в этом состоит разрешение кажущегося парадокса!
Разумеется, в простейшем случае w=kc групповая скорость d w /dk тоже равна с, т. е. когда все фазы движутся с одинаковой скоростью, естественно, и групповая скорость будет той же самой.
§ 5. Амплитуда вероятности частиц
Читать дальше