Александр Филиппов - Многоликий солитон

Здесь есть возможность читать онлайн «Александр Филиппов - Многоликий солитон» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1990, ISBN: 1990, Издательство: Наука, гл. ред. физ.-мат. лит., Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Многоликий солитон: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Многоликий солитон»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Одно из наиболее удивительных и красивых волновых явлений — образование уединенных волн, или солитонов, распространяющихся в виде импульсов неизменной формы и во многом подобных частицам. К солитонным явлениям относятся, например, волны цунами, нервные импульсы и др.
В новом издании (1-е изд. — 1985 г.) материал книги существенно переработан с учетом новейших достижений.
Для школьников старших классов, студентов, преподавателей.

Многоликий солитон — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Многоликий солитон», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
С уменьшением λ она уменьшается Заметим что нет смысла рассматривать длины - фото 191

С уменьшением λ она уменьшается. Заметим, что нет смысла рассматривать длины волн, меньшие 2 α . Понять это легко, если вспомнить, что наблюдать мы можем лишь движения частиц, а не мысленно проведенные через их отклонения синусоиды (см. рис. 5.5). С учетом этого ограничения скорость убывает при уменьшении длины волны от значения v до значения (2 v /π).

Дисперсионную формулу (5.16) можно получить и из найденного нами раньше выражения для частот стоячих волн в цепочке конечной длины l (см. (5.9)). Для этого заметим, что длина волны в моде с номером М равна λ М = 2(N + 1) α / М = 2 l / М , где М = 1, ..., N . Дисперсии не было бы, если бы соответствующие частоты ω М были пропорциональны М . Как мы знаем, такой пропорциональности для больших М нет. Отсюда и возникает зависимость скорости v от λ при малых длинах волн и больших частотах. Выражая правую часть формулы (5.9) через λ М , получаем соотношение Коши (5.16) между ω М и λ М .

Плавные синусоидальные кривые, огибающие стоячие волны (5.7), можно получить, заменив в формуле (5.7) на х :

Это выражение описывает и стоячие волны в упругом стержне При этом λ М - фото 192

Это выражение описывает и стоячие волны в упругом стержне. При этом λ М принимает значения λ М = 2 l/M , где M может неограниченно возрастать ( М = 1, 2, 3, ...). Значения частот получаются из дисперсионной формулы 516 если заменить в ней sin π α λ на - фото 193получаются из дисперсионной формулы (5.16), если заменить в ней sin (π α /λ) на π α /λ (вспомните, что в пределе непрерывной среды α → 0):

Аналогичные формулы читатель легко напишет для частот собственных колебаний - фото 194

Аналогичные формулы читатель легко напишет для частот собственных колебаний струн, воздуха в органных трубах и т. д.

Как «услышать» разложение Фурье?

Рояль был весь раскрыт и струны в нем дрожали...

А. Фет

Можно проверить, что функции y M ( t , х ) в формуле (5.18) удовлетворяют волновому уравнению. Линейные комбинации таких решений также являются решениями. Этот способ решения волнового уравнения открыл еще Даниил Бернулли (метод Бернулли), но лишь Фурье сумел с полной ясностью доказать, что так можно получить самое общее решение и что в этом смысле метод Бернулли равносилен методу Д'Аламбера. Разложение произвольного колебания струны в сумму мод (5.18) и другие подобные разложения (например, разложение бегущей волны на сумму синусоидальных бегущих волн) называются разложениями Фурье. Если периодическая функция f ( х ) с периодом 2 l (т. е. f ( х + 2l ) = f ( х ) при любом х ) представлена в виде суммы

то легко проверить что даламберова волна 510 при g х f х - фото 195

то легко проверить, что д'аламберова волна (5.10) при g ( х ) = f ( х ) представляется в виде суммы мод (5.18), в которой следует положить ω M = 2π vM .

Обычно амплитуды А M быстро убывают с ростом номера моды М . Рассмотрим, например, движение струны, оттянутой в средней точке и после этого отпущенной. Так возбуждаются колебания струн щипковых инструментов. При этом «звучат» все моды *), но их амплитуды быстро убывают с ростом частоты. Ухо воспринимает как высоту звука частоту, соответствующую низшей (основной) моде, а примесь высших мод определяет тембр. Звуки, вызванные очень высокими модами, не воспринимаются по двум причинам. Во-первых, их амплитуда мала. Во-вторых, ухо просто «не слышит» частоты больше 20 кГц (это, кстати, объясняет бедность тембра высоких звуков.)

*) Синусоидальные моды часто называют гармониками, что особенно естественно, если речь идет о музыке. Мы называем гармониками только синусоидальные бегущие волны, так что разложение Фурье для стоячей волны — это разложение на нормальные моды, а для бегущей — разложение на гармоники.

Таким образом, о высших модах часто можно просто забыть и с легким сердцем пользоваться разложением Фурье с конечным и даже небольшим числом членов. Разложение бегущей волны на простые гармоники с полным основанием можно рассматривать не просто как математическое изобретение, а как физический процесс, который наблюдается постоянно. Этот процесс называется гармоническим анализом, а проборы, которые его осуществляют, называют гармоническими анализаторами. Они откликаются (резонируют) **) на гармоники, частота которых близка к одной из собственных частот (т. е. к частоте одной из мод). Таким образом можно выяснить частотный состав произвольного колебания. Простейшие анализаторы звука — монохорд или же просто струны любого музыкального инструмента. При достаточной силе звука они начинают дрожать и даже звучать, если среди набора частот (или, как говорят, в спектре частот) падающей на них звуковой волны есть достаточно сильная составляющая, частота которой совпадает с их собственной частотой.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Многоликий солитон»

Представляем Вашему вниманию похожие книги на «Многоликий солитон» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Александр Штейнберг - Многоликий король. Юл Бриннер
Александр Штейнберг
Александр Филиппов - Аномальная зона
Александр Филиппов
Александр Филиппов - Вся политика. Хрестоматия
Александр Филиппов
Александр Филиппов - Когда сверкает молния
Александр Филиппов
libcat.ru: книга без обложки
Александр Филиппов
Александр Филиппов - 25 лет. Лирика, песни и сказки
Александр Филиппов
Александр Филиппов - Сказка без чудес. Роман
Александр Филиппов
Александр Филиппов - Избранный
Александр Филиппов
Отзывы о книге «Многоликий солитон»

Обсуждение, отзывы о книге «Многоликий солитон» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x