Я опять отправился в Гарвард, где мне показали еще три кости: антилопы, опоссума и мыши. Вот как они выглядели (плюс кость лошади):
Ну разве это не прекрасно? Форма костей изменяется на удивление пропорционально; вы только поглядите, какая тоненькая и крошечная бедренная кость мыши! Малюсенькая и тонюсенькая бедренная косточка для малюсенькой мышки. Разве это не замечательно? Никогда не перестану поражаться красоте каждой детали матушки-природы.
Но как насчет результатов измерений, как они вписываются в мое уравнение? Произведенные расчеты повергли меня в шок, настоящий шок. Бедренная кость лошади оказалась примерно в 40 раз длиннее кости мыши и, согласно моим расчетам, в этом случае должна была быть более чем в 250 раз толще. А она была толще всего примерно в 70 раз.
И тут меня осенило: «А почему бы не попросить у них бедренную кость слона? Это помогло бы окончательно решить вопрос». Думаю, ребята в Гарварде были несколько раздражены, когда я явился к ним снова, но все же любезно выдали мне бедренную кость слона. К тому времени, я уверен, они просто хотели поскорее от меня избавиться! Поверьте, кость слона было очень трудно нести; она была длиннющая и, похоже, весила целую тонну. Я не мог дождаться момента, когда ее измерю, и не спал всю ночь.
И знаете, что я обнаружил? Бедренная кость мыши была 1,1 ± 0,05 см в длину и всего 0,7 ± 0,1 мм толщиной – действительно очень тонкая. Длина бедренной кости слона составляла 101 ± 1 см, то есть приблизительно в 100 раз длиннее кости мыши. А как насчет толщины? Измерив кость слона, я получил толщину 86 ± 4 мм, то есть примерно в 120 раз больше диаметра бедренной кости мыши. Однако, по моим расчетам, если Галилей прав, то бедренная кость слона должна была быть где-то в тысячу раз толще, чем у мыши. Иными словами, ее толщина должна составлять около 70 сантиметров. А на самом деле ее диаметр был где-то 9 сантиметров. В итоге мне пришлось признать, хоть и с крайней неохотой, что великий Галилео Галилей ошибался!
Измерение межзвездного пространства
Одной из областей физики, для которой измерения стали истинным проклятием, является астрономия. Измерения и их погрешность – огромная проблема для астрономов, в частности потому, что дело приходится иметь с мегарасстояниями. Как далеко находятся звезды от Земли? Ну, например, наша прекрасная соседка Андромеда? А как насчет галактик, которые мы можем видеть только в самые мощные телескопы? Насколько далеки от нас наиболее удаленные объекты в космосе, которые мы видим? Насколько вообще велика наша Вселенная?
Это лишь некоторые из самых фундаментальных и глубоких вопросов всего естествознания. И разные ответы на них буквально перевернули наше представление о Вселенной с ног на голову. В сущности, у такого дела, как оценка астрономических расстояний, вообще замечательная история. Через изменения в методиках расчета расстояний до звезд можно проследить эволюцию самой астрономии. И на каждом этапе полученные данные зависят от степени точности измерений, то есть используемого оборудования и изобретательности астрономов. Например, вплоть до конца XIX века единственными данными, с помощью которых астрономы могли производить расчеты, был так называемый параллакс.
Вы все сталкивались с этим явлением, хотя чаще всего и не знали об этом. Где бы вы сейчас ни сидели, оглянитесь вокруг и найдите участок стены с каким-то элементом: дверным проемом или висящей картиной. А если вы находитесь на улице, то какой-нибудь заметный элемент ландшафта, например большое дерево. Теперь вытяните прямо перед собой руку и поднимите один из пальцев так, чтобы он оказался с той или другой стороны от выбранного вами объекта. Теперь зажмурьте сначала правый глаз, а затем левый. Вы увидите, как ваш палец перепрыгнет слева направо по отношению к дверному проему или дереву. Теперь переместите палец ближе к глазам и проделайте все снова. Ваш палец сместится еще сильнее. Эффект огромен ! Это и есть параллакс.
Все происходит из-за смены ракурса при наблюдении за объектом, в данном случае из-за перехода с линии зрения левого глаза на линию зрения правого (глаза человека расположены примерно в 6,5 сантиметра друг от друга).
Это и есть ключевая идея, лежащая в основе определения расстояний до звезд, только вместо 6,5 сантиметра, разделяющих наши глаза, в качестве базовой линии используется диаметр орбиты Земли (около 300 миллионов километров). По мере того как Земля обращается вокруг Солнца (по орбите с диаметром около 300 миллионов километров) в течение года, близлежащая звезда будет смещаться в небе относительно более удаленных звезд. Мы же раз в полгода измеряем угол в небе (угол параллакса) между двумя положениями этой звезды. Если произвести многократные измерения с полугодовым интервалом, получатся разные углы параллакса. На приведенном ниже рисунке я ради простоты примера выбрал звезду в плоскости орбиты Земли (так называемой орбитальной плоскости, или плоскости эклиптики), но описанный здесь принцип параллакса применим для любой звезды, а не только для звезд в плоскости эклиптики.
Читать дальше
Конец ознакомительного отрывка
Купить книгу