Мое безоговорочное признание решающей роли измерений в физике послужило одной из причин скептического отношения к теориям, которые нельзя проверить с помощью измерений. Возьмем теорию струн или ее, так сказать, усовершенствованную версию, теорию суперструн, то есть последнюю на сегодняшний день попытку теоретиков предложить «теорию всего». Физикам-теоретикам – а теорию струн выдвинули поистине блестящие ученые – еще предстоит разработать хотя бы один эксперимент, один прогноз, позволяющий проверить любое из положений теории струн. Увы, по крайней мере на текущий момент ничто в данной теории не может быть подтверждено либо опровергнуто экспериментально. Это означает, что пока что она не имеет предсказательной силы, в связи с чем некоторые физики, в том числе Шелдон Глэшоу из Гарварда, сомневаются, стоит ли вообще считать ее физической теорией.
Однако у теории струн немало поистине блестящих и весьма красноречивых сторонников. Один из них – Брайан Грин; его книга и одноименная программа PBS [8] PBS – американская некоммерческая служба телевизионного вещания. Прим. ред.
The Elegant Universe («Элегантная Вселенная») (в них, кстати, входит краткое интервью с вашим покорным слугой) очаровательны и красивы. М-теория Эдварда Уиттена, объединившая пять различных теорий струн и настаивающая на наличии одиннадцати измерений пространства, из которых мы, существа низшего порядка, видим только три, также довольно непривычна и наталкивает на серьезные размышления.
Когда какая-то теория не подтверждается фактами, я вспоминаю свою бабушку, мамину маму, поистине великую женщину, которая имела в запасе множество замечательных поговорок и привычек, делавших ее, по сути, на редкость интуитивным ученым. Например, она часто говорила, что сто я щий человек короче, чем лежащий. Я обожаю рассказывать об этом своим студентам. В первый же день занятий я объявляю им, что в память о своей бабушке намерен сейчас же проверить эту диковинную идею. Они, конечно же, полностью сбиты с толку. Я буквально читаю их мысли: «Стоя короче, чем лежа? Но это невозможно!»
Их недоверие вполне понятно. Конечно, даже если какая-то разница и существует, то она, несомненно, ничтожно мала. В конце концов, если бы она составляла, скажем, пару десятков сантиметров, мы бы это точно знали, не так ли? Просыпаетесь вы утром, встаете с постели и – бац – становитесь заметно ниже, на целых двадцать сантиметров. Но если разница составляет всего один миллиметр, вы ее, скорее всего, не заметите. Вот почему я исхожу из того, что если бабушка права, то разница, вероятно, не больше пары сантиметров.
Для проведения эксперимента мне в первую очередь необходимо убедить аудиторию в точности моих измерений. Поэтому я начинаю с измерения вертикально установленного алюминиевого стержня – его длина составляет 150,0 сантиметров – и прошу слушателей подтвердить, что я определенно способен измерить его с точностью до миллиметра. Итак, длина стержня в вертикальном положении 150,0 ± 0,1 см. Затем я измеряю его в горизонтальном положении и получаю 149,9 ± 0,1 см, что вполне согласуется – с учетом погрешности измерений – с результатом замера в вертикальном положении.
Чего же я добиваюсь, проделывая эти манипуляции? Многого! Во-первых, два измерения наглядно демонстрируют, что я в состоянии измерить длину объекта с точностью до 1 миллиметра. Не менее важно и то, что этим я хочу студентам доказать, что не мошенничаю и не пытаюсь их обмануть. Предположим, что я бы заранее приготовил специальную рулетку для горизонтальных замеров – это был бы очень нечестный, непорядочный поступок. Наглядно продемонстрировав аудитории, что длина алюминиевого стержня практически одинакова при обоих замерах, я тем самым подтверждаю свою репутацию и научную честность.
Затем я приглашаю добровольца из зала, измеряю его в стоячем положении и записываю число на доске – скажем, 185,2 см, конечно же, плюс-минус миллиметр с учетом погрешности. Потом помогаю парню улечься на мой стол, оснащенный специальным измерительным прибором, похожим на гигантскую деревянную мерку, которой пользуются обувщики; только я измеряю не ступню, а все тело. Попутно я отпускаю разные шуточки по поводу того, удобно ли добровольцу, шумно благодарю его за то, что он пошел на такую жертву ради науки, и так далее, в результате чего ему становится немного не по себе. Его мучает вопрос, что же я задумал? Я плотно прижимаю треугольный деревянный брусок к макушке парня, лежащего на столе, и пишу на доске второе число. Таким образом, у нас теперь есть два результата измерения, каждое с погрешностью в 1 мм. Итак, что же мы имеем?
Читать дальше
Конец ознакомительного отрывка
Купить книгу