Ричард Фейнман - Характер физических законов

Здесь есть возможность читать онлайн «Ричард Фейнман - Характер физических законов» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: Литагент АСТ, Жанр: Физика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Характер физических законов: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Характер физических законов»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В основу этой книги, больше 50 лет состоящей в списке международных бестселлеров, легли знаменитые лекции Ричарда Фейнмана, прочитанные им в 1964 году в Корнеллском университете. В этих лекциях прославленный физик рассказывает о фундаментальных законах природы и величайших достижениях мировой физики, не утративших своей актуальности и по сей день, – рассказывает простым доступным языком, понятным даже самому обычному читателю. Чего только стоит его знаменитая аналогия с мокрым человеком, который пытается вытереться мокрым полотенцем, на примере которой он объясняет закон сохранения энергии!..

Характер физических законов — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Характер физических законов», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Во взаимоотношениях физики и математики имеется еще одна интересная черта: математика позволяет доказать, что в физике исходя из разных точек зрения можно прийти к одним и тем же выводам. Это и понятно: если у вас есть аксиомы, то вместо них вы можете воспользоваться некоторыми теоремами; физические же законы построены так деликатно, что их различные, хотя и эквивалентные формулировки качественно отличаются. Этим они и любопытны. Для примера я сформулирую закон тяготения тремя разными способами. Все они совершенно эквивалентны, но звучат очень несхоже.

Первая формулировка – это когда силы между телами описываются уравнением, которое я приводил выше:

Каждое тело, «узнав», что на него действует сила, ускоряется, т. е. изменяет свое движение на определенную величину за секунду. Это обычная формулировка закона, я назову ее ньютоновой. Эта формулировка говорит, что сила зависит от чего-то находящегося на конечном расстоянии. Она обладает так называемым свойством нелокальности. Сила, действующая на предмет, зависит от того, насколько удален от него другой предмет.

Вам, возможно, не понравится мысль о действии на расстоянии. Откуда может узнать предмет, что происходит вдалеке? Ну что ж, имеется другой способ сформулировать закон – очень странный. Он основан на понятии поля. Объяснить его трудно, но я попытаюсь дать вам хотя бы приблизительное представление. Звучит он совсем по-другому. В каждой точке пространства имеется число (именно число, а не механизм: в том-то и вся беда с физикой, что она должна быть математической), и, когда вы переходите с места на место, это число меняется. Если в какой-то точке пространства поместить предмет, то на него будет действовать сила в том направлении, в котором быстрее всего изменяется это число (я дам ему обычное название – потенциал; сила действует в направлении быстрейшего изменения потенциала). Далее, сила пропорциональна тому, насколько быстро изменяется потенциал при перемещении из одной точки в другую. Это только одна часть формулировки, и ее недостаточно, потому что я еще не сказал вам, как именно изменяется потенциал. Я мог бы сказать, что потенциал изменяется обратно пропорционально расстоянию от каждого тела, но тогда мы снова вернулись бы к понятию о действии на расстоянии. Можно сформулировать закон по-другому, сказав: нам не надо знать, что происходит за пределами маленького шарика. Если вы хотите знать, чему равен потенциал в центре, скажите мне просто, каков он на поверхности сколь угодно малого шарика. Вам не надо смотреть вокруг шарика, скажите лишь, каков потенциал по соседству с интересующей вас точкой и какова масса шарика. Правило таково. Потенциал в центре равен среднему потенциалу на поверхности шарика минус постоянная G , которая была в предыдущем уравнении, поделенная на удвоенный радиус шарика (обозначим его через а ) и умноженная на массу шарика, если шарик достаточно мал:

Как видите этот закон отличается от предыдущего ибо он говорит нам что - фото 2

Как видите, этот закон отличается от предыдущего, ибо он говорит нам, что происходит в некоторой точке, если известно, что происходит рядом с ней. Ньютонова же формулировка позволяет сказать, что происходит в данный момент времени, если мы знаем, что происходит в предыдущий момент. Во времени она переводит нас плавно от момента к моменту, но в пространстве заставляет скакать из одного места в другое. Вторая формулировка локальна и во времени, и в пространстве, потому что она говорит о соседних точках. Но в математическом смысле обе формулировки эквивалентны.

Существует еще и третья формулировка, основанная на качественно иных понятиях. Если вам не нравится действие на расстоянии, то я показал вам, как можно без него обойтись. Теперь я дам вам формулировку, которая в философском смысле прямо противоположна предыдущей. Тут нам не нужно переходить от момента к моменту, от точки к точке; мы опишем все сразу, целиком. Пусть у нас имеется несколько частиц и вы желаете знать, как одна из них перемещается из одного места в другое. Вообразим все возможные пути перехода из одного места в другое за данный отрезок времени (рис. 17). Скажем, частица должна перейти из точки X в точку Y за час и вы желаете знать, по какому пути она может двигаться. Вы воображаете всевозможные кривые и для каждой кривой подсчитываете определенную величину. (Я не хочу рассказывать, какая это величина, но для тех, кто о ней наслышан, напомню, что для каждого пути она равна среднему значению разности между кинетической и потенциальной энергией.) Если вы подсчитаете эту величину для одного пути, а затем для другого, то для разных путей получите разные числа. Но один из путей дает наименьшее возможное число – именно этим путем и воспользуется на самом деле частица! Теперь мы описываем действительное движение, эллипс, высказывая нечто о кривой в целом. Нам не нужно думать о причинности, о том, что частица чувствует притяжение и движется в согласии с ним. Вместо этого мы говорим, что она разом «обнюхивает» все кривые, все возможные пути и решает, какой выбрать. (Выбирает тот, для которого наша величина – минимальная.)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Характер физических законов»

Представляем Вашему вниманию похожие книги на «Характер физических законов» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Характер физических законов»

Обсуждение, отзывы о книге «Характер физических законов» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x