1. Координата или длина в системе K определяется сравнением ее с масштабной линейкой, неподвижной в этой системе.
2. Время в системе К определяется показаниями часов, покоящихся в данной системе.
В другой координатной системе K 1необходимо иметь часы и масштаб, которые покоятся в этой системе, и все измерения производить именно этим масштабом и этими часами.
Как видите, x 1и x , или t 1и t , соответствуют, вообще говоря, разным физическим процессам — измерениям, которые проводятся в разных физических условиях. Но достаточно предположить существование сигналов, распространяющихся с бесконечной скоростью, чтобы убедиться в том, что t 1 = t .
Не будем далее углубляться в дебри анализа. Мы зафиксировали наше предположение и объяснили смысл значков x и x 1, t и t 1. Пока этого достаточно.
Итак, формулы перехода от одной системы K к другой K 1, равномерно и прямолинейно движущейся вдоль оси x первой системы, имеют вид:
x 1 = x – vt ;
y 1 = y ;
z 1 = z ;
t 1 = t .
Это преобразование координат и времени при переходе от одной системы к другой называют преобразованием Галилея.
Естественно расширить вопрос. А как обстоит дело с остальными законами механики? Будут ли справедливы в системе K 1все остальные законы в том случае, если они соблюдаются в системе K ? Говоря другими словами, будет ли система K 1также инерциальной системой отсчета? Оказывается, что да, будет.
Если K — инерциальная система, то любая система отсчета (K 1), равномерно и прямолинейно движущаяся относительно K, также инерциальна.
Выражая ту же мысль другими словами, говорят: законы механики инвариантны (неизменны) по отношению к преобразованию Галилея. Но если только K 1движется ускоренно относительно K, то в ней законы механики имеют другой вид.
Вот утверждения: инерциальных систем отсчета бесконечно много, при описании механических явлений все они равноправны, законы механики во всех инерциальных системах отсчета имеют один и тот же вид, — как раз и составляют принцип относительности Галилея — важнейший принцип механики Ньютона.
Снова принцип относительности Галилея.
Но не будем обольщаться. Мы не доказали принцип относительности совершенно строго. Мы проделали только часть работы — обосновали инвариантность (дословно — неизменяемость) первого закона Ньютона при переходе от одной инерциальной системы к другой. Инвариантность других законов Ньютона мы провозгласили. (Собственно говоря, мы их еще и не сформулировали.)
Однако если принять преобразование Галилея и четко сформулировать второй и третий законы Ньютона, то доказательство инвариантности этих законов во всех инерциальных системах отсчета — задача по своему характеру чисто математическая. Поэтому не будем этим заниматься, а постараемся понять физическое содержание остальных законов Ньютона, после чего (снова и снова) вернемся к первому закону и к принципу относительности Галилея.
Уже в первом законе механики встречается понятие силы. По существу, все остальные законы механики как раз и расшифровывают это понятие.
Опять уклонимся от идеально четких определений и формулировок, так как попытка дать строгое, аксиоматическое определение понятия силы завела бы слишком далеко. Просто постараемся отметить самое характерное.
Сила, вообще говоря, характеризует взаимодействие тел между собой [22] .
Кое-что о силе.
Однако сказать, что сила характеризует взаимодействие, значит сказать очень мало. Нам надо знать: как проявляется это взаимодействие?
Первое, что можно утверждать, — это следующее.
Если на данное тело действовать силой, то тело приобретает ускорение.
Если одну и ту же силу прикладывать к различным телам, ускорения, полученные этими телами, также, вообще говоря, будут различны.
Поскольку сила (взаимодействие) проявляется в появлении ускорения, а ускорение характеризуется не только величиной, но и направлением, ясно, что сила также характеризуется не только своей абсолютной величиной, но и направлением своего действия. Оказывается, что сила — вектор [23] .
Вы, возможно, заметили, что для того, чтобы предыдущие рассуждения были содержательны, мы должны уметь измерять силу, прикладывать равные силы к разным телам и т. д.
Читать дальше