Линда Далримпл Хендерсон «Четвертое измерение и неевклидова геометрия в современном искусстве» (Linda Dalrymple Henderson, The Fourth Dimension and Non-Euclidean Geometry in Modern Art, Princeton, N. J.: Princeton University Press, 1983), с. xix.
Э. Т. Белл «Математики» (E. T. Bell, Men of Mathematics, New York: Simon and Schuster, 1937), с. 484.
Там же, с. 487. Скорее всего, именно этот случай пробудил ранний интерес Римана к теории чисел. Много лет спустя он высказал знаменитое предположение касательно содержащей дзета-функцию формулы в теории чисел. За сто лет безуспешных сражений с «римановой гипотезой» величайшие математики мира так и не сумели доказать ее. Даже самые современные компьютеры не справились с этой задачей, и гипотеза Римана вошла в историю как одна из самых известных недоказанных теорем в теории чисел – вероятно, самая знаменитая в математике. Белл отмечает: «Тот, кто докажет или опровергнет ее, несомненно, прославится» (там же, с. 488).
Джон Валлис (Уоллис), Der Barycentrische Calcul, Leipzig, 1827, р. 184.
Хотя Риману обычно приписывают роль движущей творческой силы, в конце концов сокрушившей рамки евклидовой геометрии, по праву человеком, который открыл геометрию высших измерений, должен был стать престарелый наставник Римана, сам Гаусс.
В 1817 г., почти за десять лет до рождения Римана, Гаусс выразил свое глубокое недовольство евклидовой геометрией. В пророческом письме к другу, астроному Генриху Ольберсу, он недвусмысленно заявил, что евклидова геометрия математически несовершенна.
В 1869 г. математик Джеймс Дж. Сильвестр писал, что Гаусс всерьез обдумывал возможность существования многомерных пространств. Гаусс представлял себе свойства существ, названных им «книжными червями», способных жить на двумерных листах бумаги. Затем он распространил свои выводы на «существ, способных представить себе пространство с четырьмя и более измерениями» (процитировано в: Линда Далримпл Хендерсон «Четыре измерения и неевклидова геометрия в современном искусстве» (Linda Dalrymple Henderson, The Fourth Dimension and Non-Euclidean Geometry in Modern Art, Princeton, N. J.: Princeton University Press, 1983), с. 19).
Но если Гаусс сформулировал теорию многомерности, на 40 лет опередив всех, тогда почему же он упустил поистине историческую возможность избавиться от уз трехмерной евклидовой геометрии? Историки отмечают присущую Гауссу консервативность в работе, общественной и личной жизни. Он никогда не покидал пределов Германии и почти всю жизнь провел в одном городе. Это обстоятельство отразилось на его профессиональной деятельности.
В примечательном письме, написанном в 1829 г., Гаусс признавался своему другу Фридриху Бесселю, что никогда не опубликует свою работу, посвященную неевклидовой геометрии, из опасения, что она вызовет споры в кругах «беотийцев». Математик Морис Клайн писал: «Он [Гаусс] заявлял в письме к Бесселю от 27 января 1829 г., что, вероятно, никогда не опубликует результаты своих исследований этого предмета, поскольку опасается насмешек или, как выразился сам Гаусс, боится навлечь недовольство "беотийцев", образно названных в память о недалеком греческом народе» («Математика и физический мир» (Mathematics and the Physical World, New York: Crowell, 1959, p. 449)). Гаусс так робел перед старой гвардией, узколобыми «беотийцами», свято верившими в три измерения, что предпочел сохранить в тайне лучший из своих трудов.
В 1869 г. Сильвестр в интервью с биографом Гаусса Сарториусом фон Вальтерсхаузеном писал: «Этот великий человек говорил, что отложил в сторону несколько вопросов, которые анализировал, и надеялся применить к ним геометрические методы, когда его представления о пространстве станут полнее; ибо если мы можем вообразить себе существа (подобные бесконечно плоским «книжным червям» на бесконечно тонком листе бумаги), которым известно лишь двумерное пространство, нам под силу представить себе и существа, способные оперировать четырьмя и более измерениями» (процитировано в: Хендерсон «Четыре измерения и неевклидова геометрия в современном искусстве», с. 19).
Гаусс писал Ольберсу: «Я все больше убеждаюсь, что (физическую) неизбежность нашей (евклидовой) геометрии невозможно доказать, по крайней мере средствами человеческого разума и доступно для понимания человеческим разумом. Возможно, в другой жизни мы сумеем получить представление о природе пространства, которое сейчас остается для нас недосягаемым. А до тех пор нам следует ставить геометрию в один ряд не с арифметикой, как это делается априори, а с механикой» (процитировано в: Морис Клайн «Математическая мысль от древности до наших дней» (Morris Kline, Mathematical Thought from Ancient to Modern Times, New York: Oxford University Press, 1972), с. 872).
Читать дальше
Конец ознакомительного отрывка
Купить книгу