Ричард Мюллер - Сейчас. Физика времени

Здесь есть возможность читать онлайн «Ричард Мюллер - Сейчас. Физика времени» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Литагент МИФ без БК, Жанр: Физика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Сейчас. Физика времени: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Сейчас. Физика времени»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Ричард Мюллер, профессор Калифорнийского университета в Беркли, собирает все достижения современной физики и предлагает нам сложить из них пазл. Он рассказывает об открытиях Эйнштейна, о черных дырах, в которых, возможно, сосредоточена большая часть энтропии Вселенной, делится последними новостями из квантовой физики, а также исследует три модели движения времени.
Книга будет интересна студентам и преподавателям, а также всем, кто интересуется физикой и концепцией времени и хочет расширить свой кругозор.
На русском языке публикуется впервые.

Сейчас. Физика времени — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Сейчас. Физика времени», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Как может математика, будучи в конечном счете продуктом человеческой мысли, которая не зависит от опыта, так превосходно описывать реальные объекты?

На самом деле все не совсем так. Ни у кого нет хороших уравнений, которые описывали бы живые организмы, процесс мышления или хотя бы экономические взаимоотношения между людьми. Но это же не физика, можете сказать вы. Да, правда, но будьте осторожны, опасайтесь тавтологии.

Существует мнение (спорное), что физика – это та крохотная часть реальности, которая поддается анализу с помощью математики. При этом неудивительно, что она описывается математикой; если какой-то аспект реальности не поддается нашим математическим атакам, мы даем ему иное имя: история, политология, этика, философия, поэзия. Какая часть всеобщего знания относится к категории «физика»? С точки зрения теории информации – очень маленькая. Какая доля тех ваших знаний, которые по-настоящему важны , относится к физике? Мне кажется, что даже у Эйнштейна эта доля была крохотной.

Ограниченность науки

Когда я учился в Школе естественных наук в Бронксе, один старшеклассник (встречавшийся с моей сестрой) подарил мне книгу в мягкой обложке – The Limitations of Science («Ограниченность науки») Джона Салливана. Эта книга, исчерканная моими замечаниями, до сих пор хранится: Mentor Edition, цена 50 центов, девятое издание 1959 года, копия классического издания 1933 года.

Я возненавидел ее. Она разрушала мою веру в то, что наука – высший способ познания и арбитр истины, будто у нас есть шансы когда-нибудь заглянуть с ее помощью в будущее и ясно увидеть, что нас ждет. Я был настолько разочарован, что начал задумываться, не выбрать ли в качестве специализации английский язык вместо физики. Тем не менее прочел книгу от корки до корки и отметил в ней несколько десятков абзацев, показавшихся особенно тревожными или важными. В одном из помеченных мной мест на странице 70 говорилось:

Принцип неопределенности основан на том, что мы не можем наблюдать природные явления, не нарушая хода вещей. Это прямое следствие квантовой теории.

Таким было мое первое знакомство с принципом неопределенности Гейзенберга; когда Салливан писал свою книгу, этот принцип еще не получил современного названия. Фразу «не нарушая хода вещей» сегодня было бы точнее записать так: «…не вызвав коллапса волновой функции». Оказалось, наука не умеет предсказывать, а может только оценивать вероятности. Я был страшно разочарован.

В то время я, конечно, не понимал: меня тревожит, в сущности, то же самое, что в свое время беспокоило Эйнштейна. Он был не в состоянии примириться с концепцией неполноты физики, согласно которой эта наука не есть полное описание реальности, равно как и прошлое не полностью определяет будущее.

Пока Эйнштейн сражался с этими вопросами, тон в науке задавало еще одно недавнее событие, возможно, даже более удивительное, чем ограниченность физики. Эйнштейн знал, что все математические теории неполны . Этот факт открыл и доказал в 1931 году приятель Эйнштейна по Принстону Курт Гёдель [240].

Шок от Гёделя

Гёдель доказал математическую теорему, глубоко ранившую не только математиков и физиков, но также философов и специалистов по логике. Эта теорема не упоминается в книге Салливана от 1933 года – вероятно, потому что на тот момент она была еще новой и мало кто ее понимал. Или, может быть, мало кто в нее верил. А из тех, кто поверил, многие надеялись, что ее еще удастся опровергнуть либо обойти. Или, возможно, Салливан не считал математику наукой: в Европе ее часто рассматривают как своего рода свободное искусство, наряду с музыкой и философией. Прошло время, и теперь теорема Гёделя считается и захватывающе интересной, и необычайно важной; многие считают ее величайшим математическим достижением XX столетия.

Теорему Гёделя можно сформулировать обманчиво просто: все математические теории неполны . По существу это означает, что в любой придуманной вами математической системе будут присутствовать истины, доказать которые невозможно – мало того, их невозможно даже обозначить как истины.

Гёдель не доказал, что математика как таковая неполна; он доказал лишь, что любой набор определений, аксиом и теорем обязательно неполон. К примеру, существуют теоремы, которые невозможно доказать с использованием действительных чисел, – к примеру, возможность того, что число π e иррационально. (Здесь π – это отношение длины окружности к ее диаметру, а e – основание натурального логарифма.) Тем не менее если расширить числовую систему так, чтобы она включала также и мнимые числа, не исключено, что появится возможность доказать эту теорему. (На самом деле мы не знаем, иррационально число π e или нет; я привожу это утверждение только для того, чтобы проиллюстрировать результат Гёделя.) Но как только вы расширите свою математику, обязательно окажется, что есть еще одна теорема, которая верна, но недоказуема.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Сейчас. Физика времени»

Представляем Вашему вниманию похожие книги на «Сейчас. Физика времени» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Сейчас. Физика времени»

Обсуждение, отзывы о книге «Сейчас. Физика времени» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x