Ричард Мюллер - Сейчас. Физика времени

Здесь есть возможность читать онлайн «Ричард Мюллер - Сейчас. Физика времени» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Литагент МИФ без БК, Жанр: Физика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Сейчас. Физика времени: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Сейчас. Физика времени»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Ричард Мюллер, профессор Калифорнийского университета в Беркли, собирает все достижения современной физики и предлагает нам сложить из них пазл. Он рассказывает об открытиях Эйнштейна, о черных дырах, в которых, возможно, сосредоточена большая часть энтропии Вселенной, делится последними новостями из квантовой физики, а также исследует три модели движения времени.
Книга будет интересна студентам и преподавателям, а также всем, кто интересуется физикой и концепцией времени и хочет расширить свой кругозор.
На русском языке публикуется впервые.

Сейчас. Физика времени — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Сейчас. Физика времени», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вероятно, я мог бы отправить сообщение, изменив ориентацию своего поляризатора? Нет, это не работает. Обнаруженные в удаленной локации фотоны все равно будут казаться случайными. При этом они не случайные на самом деле; они будут коррелировать с фотонами, которые регистрирую я, а их характеристики зависят от ориентации моего поляризатора, но выглядеть они все равно будут как случайные. Попытка передать таким образом информацию терпит неудачу, потому что экспериментаторы никак не могут контролировать момент регистрации частицы.

Все попытки разобраться, как использовать коллапсирующую волновую функцию для мгновенной передачи сигнала, до сих пор провальны. Попытайтесь сами придумать такой способ – но не тратьте на это слишком много времени. Сегодня мы точно знаем, что ваши усилия ни к чему не приведут. В 1989 году была доказана теорема о невозможности передачи информации [216], которая показывает, что если правила квантовой физики и копенгагенская интерпретация верны, то невозможно передать какую бы то ни было информацию с использованием коллапса волновой функции – ни со сверхсветовой скоростью, ни с какой-то иной.

Интересно, смягчила бы эта теорема возражения Эйнштейна против квантовой теории? Она показывает, что никакая измеримая величина не нарушает законов относительности; это возможно только для волновой функции, которая измерению не поддается. Подозреваю, что это его не успокоило бы. Присутствие в теории какой бы то ни было структуры, нарушающей принципы относительности, внушает опасение, даже если эта структура необнаружима. Кроме того, никуда не делась неполнота квантовой теории; она по-прежнему содержит элемент случайности (Бог бросает кости), подрывающий физику, по твердому убеждению Эйнштейна.

Работа над теорией измерений продолжается. В главе 21я рассказываю про теорему о запрете клонирования, которая гласит, что невозможно продублировать неизвестную волновую функцию, не разрушив ее. Это не позволяет нам изготовить несколько тысяч копий одной и той же волновой функции, а потом исследовать их последовательно чуть разными способами, чтобы подробно разобраться в структуре этой волновой функции. Такая структура находится за рамками наших измерительных возможностей. Именно поэтому волновая функция навсегда останется призрачной.

«Костыли»

Долгое время в начале своей карьеры я твердо знал, как нужно поступать с жутким дальнодействием. Я просто верил, что волновая функция – это костыль, нечто определенно полезное при размышлениях о квантовой физике, но, вообще говоря, ненужное. Хотелось думать, что когда-нибудь будет создана теория, позволяющая обойтись без нее, – теория, в которой вообще не будет коллапсирующей волновой функции. Однако эксперимент Фридмана−Клаузера безжалостно разрушил мои надежды. Регистрация на одном поляризаторе влияет на регистрацию на втором, несмотря на то, что эти два события не «связаны» скоростью света, и несмотря даже на то, что происходят они невероятно далеко – поэтому ответ на вопрос, которое из двух событий произошло первым, зависит от выбора системы отсчета. Жуткое дальнодействие – не просто составная часть теории: это составная часть реальности.

«Костыли» в физике известны давно. Это концепции, которые были введены специально, чтобы облегчить первоначальное понимание и принятие какой-то теории, но позже отставлены как ненужные и, возможно, внушающие ложные представления. Джеймс Максвелл в своей электромагнитной теории представил, что пространство заполнено крохотными механическими шестеренками, передающими радиоволны и свет. Может быть, Максвелл действительно так себе это представлял. Или для него это был всего лишь удобный способ передать концепцию электромагнетизма другим физикам, прекрасно разбиравшимся в механике, но недолюбливавшим новомодную абстрактную концепцию «поля», которое распространяется по пустому в остальном пространству.

Сегодня на оригинальные диаграммы Максвелла ссылаются разве что для развлечения, чтобы показать студентам: смотрите, даже великий теоретик может рисовать глупые картинки. Но если свет – это волна, то что выступает в роли ее переносчика? В какой среде эта волна распространяется? Вскоре был придуман новый «костыль» – эфир, вещество, колеблющееся при распространении электромагнитных волн. Концепция эфира была скомпрометирована в 1887 году, когда Майкельсон и Морли не сумели обнаружить эфирный ветер. Эйнштейн в теории относительности показал, что подобное движение зарегистрировать невозможно, потому что скорость света постоянна и одинакова во всех направлениях. В каком-то смысле эфир похож на квантовую волновую функцию: его тоже невозможно наблюдать.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Сейчас. Физика времени»

Представляем Вашему вниманию похожие книги на «Сейчас. Физика времени» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Сейчас. Физика времени»

Обсуждение, отзывы о книге «Сейчас. Физика времени» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x