Ричард Мюллер - Сейчас. Физика времени

Здесь есть возможность читать онлайн «Ричард Мюллер - Сейчас. Физика времени» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Литагент МИФ без БК, Жанр: Физика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Сейчас. Физика времени: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Сейчас. Физика времени»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Ричард Мюллер, профессор Калифорнийского университета в Беркли, собирает все достижения современной физики и предлагает нам сложить из них пазл. Он рассказывает об открытиях Эйнштейна, о черных дырах, в которых, возможно, сосредоточена большая часть энтропии Вселенной, делится последними новостями из квантовой физики, а также исследует три модели движения времени.
Книга будет интересна студентам и преподавателям, а также всем, кто интересуется физикой и концепцией времени и хочет расширить свой кругозор.
На русском языке публикуется впервые.

Сейчас. Физика времени — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Сейчас. Физика времени», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Некоторые ученые неверно понимают квантовую физику и ошибочно считают, что кот либо жив, либо мертв, но не то и другое одновременно, а наблюдатель просто не может знать, в каком кот состоянии, пока не откроет коробку. Именно так считали Эйнштейн и Шрёдингер. В настоящее время такой подход называется теорией скрытых параметров (переменных) . В этом случае скрытым параметром будет живость кота. Именно так часто рассказывают студентам в курсе квантовой физики, но копенгагенская интерпретация не об этом. И, как я вам покажу, эксперименты с квантово-механическим свойством, известным как запутанность , позволяют сделать вывод, что верна именно копенгагенская интерпретация, а не точка зрения Эйнштейна и Шрёдингера, связанная со скрытыми параметрами. В главе 19я опишу первый такой эксперимент, проведенный Стюартом Фридманом [179]и Джоном Клаузером [180]. (Нет, кота они к своим экспериментам не привлекали.) Наилучшая теория из всех существующих говорит о том, что действительно копенгагенская интерпретация верна: кот одновременно жив и мертв до момента измерения [181].

Но разве нельзя раньше определить, умер ли кот, по состоянию тела, температуре крови или каким-то другим физиологическим признакам? На самом деле волновые функции атома и кота должны включать все возможные значения времени распада с надлежащими весами, которые отражали бы вероятность раннего и, напротив, позднего радиоактивного распада. (Если вы включите в свое измерение этот дополнительный аспект, то и амплитуда у вас получится несколько более сложной, чем просто число.) Если заглянете в коробку или, скажем, вставите туда термометр, это действие тоже будет считаться измерением. Открыв коробку, вы можете увидеть как только что погибшего кота, так и кота, который, судя по виду, пролежал мертвым почти час, несмотря на то что, по копенгагенской интерпретации, всего мгновение назад его судьба еще не была решена.

Неужели кот ничего не чувствовал? Что мы подразумеваем под измерением ? Нужен для этого человек, или, может быть, кот сам может выполнить измерение? А если мы заменим кота человеком? Как бы поразительно и тревожно это ни звучало, ответ на все наши вопросы одинаков: мы не знаем . Достоверной теории измерения пока не существует. Это лишь мечта физиков. И эта пока не сформулированная теория измерения – именно то место, где, по мнению некоторых ученых, может скрываться правда о происхождении времени, стреле времени и скорости его хода. Заглядывая в коробку, вы воздействуете только на будущую амплитуду; в будущем кот присутствует либо живым, либо мертвым. Вы не можете повлиять на прошлую амплитуду, включавшую в себя кота одновременно живого и мертвого. Таким образом, здесь имеется асимметрия – нечто новое в физике, отличающее прошлое от будущего.

Призрак, лежащий в основе реальности

Для кота Шрёдингера амплитуда жив/мертв была просто числом, которое при возведении в квадрат давало вероятность этого варианта в конце некоторого периода времени. Как я уже упоминал, если амплитуда зависит от расположения в пространстве и от времени, она называется волновой функцией. Сам Шрёдингер, автор истории с котом, знаменит в первую очередь тем, что выработал уравнение, которое показывает, как волновая функция отзывается на внешние воздействия, как она движется и меняется в пространстве и времени, – знаменитое уравнение Шрёдингера , которое изучают все будущие физики и химики.

Волновая функция может описывать электрон, летящий сквозь пространство или обращающийся по атомной орбите. В химии та же волновая функция называется орбиталью . Поскольку волновые функции не похожи на точку, а как бы размазаны, положение частицы (координаты точки, в которой она будет обнаружена) оказывается неопределенным. Скорость частицы, установленная через волновую функцию, также неопределенна. Все волновые функции изменяются во времени, а энергия частицы непосредственно связана с частотой посредством формулы, которую Эйнштейн открыл для фотонов, E = hf [182]. Если частота не имеет точного значения, в том смысле что характеристики колебания напоминают музыкальный аккорд (так же складываются из нескольких нот) или, что еще хуже, шум, то энергия тоже оказывается неопределенной.

Чтобы найти ожидаемые координаты частицы, возведем в квадрат численное значение волновой функции во всех точках. Это даст относительную вероятность обнаружения конкретной частицы в любой заданной точке. Чтобы определить, насколько быстро движется частица, следует проанализировать длины волн. Малые длины соответствуют высоким скоростям. Французский физик Луи де Бройль показал, что импульс р волновой функции (масса, умноженная на скорость) задается постоянной Планка h , деленной на длину волны: р = h /λ. В некоторых случаях волновая функция может быть сложной суперпозицией комплексных чисел. Когда вы проводите измерение, волновая функция «коллапсирует», изменяясь и принимая вид, соответствующий вашему измерению. Такое изменение называется коллапсом , потому что при нем, как правило, волновая функция упрощается. Откройте коробку, чтобы взглянуть на кота Шрёдингера, и волновая функция сколлапсирует, чтобы представлять далее либо живого кота, либо мертвого, но не то и другое одновременно. Все, что мы в принципе можем когда-либо увидеть, это простые результаты измерений, среди которых не бывает странных комбинаций вроде кота, который одновременно жив и мертв, – при измерении он может быть либо живым, либо мертвым.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Сейчас. Физика времени»

Представляем Вашему вниманию похожие книги на «Сейчас. Физика времени» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Сейчас. Физика времени»

Обсуждение, отзывы о книге «Сейчас. Физика времени» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x