Здесь есть ловушка. Современные представления о расстоянии прочно связаны с измерением времени. Сейчас мы определяем длину метра как расстояние, которое проходит свет в вакууме за 1/299 792 458 долю секунды. Такое определение означает, что свет или любая по-настоящему лишенная массы частица движется сквозь пустое пространство со скоростью ровно 299 792 458 м/с. Никакое экспериментальное измерение ни при каких обстоятельствах не сможет определить скорость света более точно! Причина определения единицы длины таким образом кроется не в нашей лени; оказывается, очень трудно предложить хорошее определение метра, и ничего лучше просто не удалось найти. Это определение пришло на смену старому методу, когда стандарт длины зависел от эталонного метрового стержня, который держали в специальном хранилище Парижа. Но если в той отдаленной галактике, о которой идет речь, часы идут медленнее (по сравнению с нашими часами), то и эталон – стандартный метровый стержень на одной из планет этой галактики – окажется длиннее, поскольку свет за каждую секунду там успевает пройти большее расстояние. Это означает, что мера длины, определенная по эталонному стержню, будет иной. Получается, что космологическое замедление времени можно спутать с изменением скорости расширения Вселенной.
Вообще говоря, при взгляде на уравнения модели Леметра возникает впечатление, что эта проблема нерешаемая; по крайней мере, в той степени, в которой точен космологический принцип (идеально однородная Вселенная). Может оказаться, что не существует способа отличить расширение пространства от расширения времени. Разумеется, Вселенная не полностью однородна; космологический принцип – всего лишь приближение, позволяющее проводить вычисления и находить решения в рамках простого (для физиков) математического выражения. Может быть, нам удастся воспользоваться неоднородностью пространства, чтобы выявить ускорение времени. Вероятно, это ускорение можно выявить локально; в ходе эксперимента Паунду и Ребке (с гамма-лучами, направленными вертикально вниз с башни) удалось зарегистрировать сдвиг (девиацию) частоты на всего лишь одну миллионно-миллиардную долю (10−15). У меня пока нет никаких практических предложений на этот счет. Немного утешает лишь то, что Дирак, предлагая свой позитрон, тоже считал, что не существует способа обнаружить такую частицу в обозримом будущем.
Фальсификация космологического происхождения времени. Часть II
Еще один возможный способ фальсифицировать (проверить) космологическое происхождение времени зависит от верности инфляционной теории, то есть идеи о том, что в первую миллионную долю секунды Вселенная расширялась со скоростью, многократно превосходящей скорость света. Период такого ускорения предшествовал нынешнему периоду ускорения, и если четырехмерная концепция пространства-времени верна, то расширяться, по идее, должно было не только пространство, но и время. Имеем ли мы возможность наблюдать первую миллионную долю секунды Большого взрыва?
Как ни поразительно, ответ – «может быть». Сейчас о самом раннем доступном для нас периоде после Большого взрыва позволяет судить такое средство зондирования, как микроволновое (реликтовое) излучение; картина его распределения во Вселенной соответствует времени примерно через полмиллиона лет после начала. Но некий потенциальный сигнал возник раньше, в первую миллионную долю секунды: это гравитационное излучение. Есть надежда, что очень скоро мы научимся регистрировать первичные гравитационные волны [273]и они позволят взглянуть на картину, значительно более близкую к моменту творения, возможно, даже в пределах периода, который необходим для наблюдения инфляции. Чтобы увидеть гравитационные волны, нужно посмотреть на обусловленную ими картину микроволнового космического излучения; в первую очередь на его поляризацию.
Некоторое время кое-кто из физиков считал, что нам удалось наблюдать именно это. Первый отчет об открытии таких гравитационных волн был сделан в марте 2014 года проектом под названием BICEP2 (Background Imaging of Cosmic Extragalactic Polarization 2) [274]. Этот проект измеряет микроволновое излучение со станции, расположенной на южном полюсе, где экстремальные холода вымораживают из атмосферы водяные пары, мешающие наземным измерениям. К несчастью, результат оказался ложной тревогой; скорее всего, прибор наблюдал помехи от излучения, создаваемого космической пылью.
Читать дальше
Конец ознакомительного отрывка
Купить книгу