Александр Астахов - Физика. Порядок вещей, или Осознание знаний. Книга 2

Здесь есть возможность читать онлайн «Александр Астахов - Физика. Порядок вещей, или Осознание знаний. Книга 2» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. ISBN: , Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Физика. Порядок вещей, или Осознание знаний. Книга 2: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Физика. Порядок вещей, или Осознание знаний. Книга 2»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«В мире, как он описывается многими науками, отсутствует смысл. Это, однако, означает не то, что мир лишен смысла, а лишь то, что многие науки слепы к нему. Смысл приносится в жертву многими науками».Виктор Франкл«Осознание знания – откровение XXI века».А. П. СмирновМоя книга – это осознание достигнутых знаний и некоторые осознанные выводы из них.Книга 2 опубликована в книге «Физика. Порядок вещей, или Осознание знаний».

Физика. Порядок вещей, или Осознание знаний. Книга 2 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Физика. Порядок вещей, или Осознание знаний. Книга 2», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Fк = m * r рад* ε рад(4.2.4)

Как видно выражение (4.2.3), (4.2.4) отличаются от привычной традиционной формулы для силы Кориолиса. В них отсутствует множитель «2», а также радиальная скорость относительного движения и угловая скорость переносного вращения. Зато присутствует радиус, который нельзя дифференцировать по времени, т.к. по физическому смыслу динамики вращательного движения это величина постоянная.

С учётом меры вращения (r о) выражение (4.2.3) и (4.2.4) можно переписать в символах динамики Ньютона:

= (m * r рад* Δω рад) / Δt = (m * r рад* Δω* r / r рад) / Δt =

= m * Δω *r / Δt = m * ΔV/ Δt = m * а к (4.2.3*)

или

= m * r рад* ε рад= m * r рад* ε * r / r рад= m * ε * r =

= m * а к (4.2.4*)

Поскольку мы фактически вели расчёт по приращению линейной скорости переносного вращения, то совершенно очевидно, что ускорение Кориолиса ( а к ) определяет только приращение линейной скорости по абсолютной величине. Об этом же свидетельствует и мерная вращательная динамика (см. выражения (4.2.3*) и (4.2.4*)). Никакого центростремительного ускорения по вращению радиальной скорости в его составе нет. Приращение угловой скорости во вращательном движении с постоянным радиусом свидетельствует о приращении только линейной скорости вращения.

Таким образом, предложенный подход к динамике вращательного движения через меру вращения – образцовый радиан, имеющий размерность один метр вращения [м рад], позволяет установить истинный смысл явления Кориолиса, который в классической физике настолько глубоко спрятан в различных абстракциях в виде всяческих моментов, что вот уже более 200 лет его никто не может отыскать.

Для того чтобы иметь возможность сравнивать величину ускорения Кориолиса, полученного с помощью размерного образцового радиана с классическим ускорением Кориолиса необходимо привести полученные нами выражения к традиционному классическому виду с использованием соотношений второго закона Кеплера (ω 1/ ω 2= r 2 2/ r 1 2).

В традиционной формуле ускорение Кориолиса, как известно, определяется через угловую скорость переносного вращения и радиальную скорость относительного движения. Для приведения полученных выражений к традиционному виду преобразуем выражение (4.2.1) следующим образом:

Δω рад= ω 2рад – ω 1рад= ω 1* r 2/ r рад – ω 2* r 2/ r рад =

= (ω 1* r 2 – ω 2* r 2) / r рад(4.2.5)

Выразим (ω 2) через (ω 1) в соответствии со вторым законом Кеплера (ω 1/ ω 2= r 2 2/ r 1 2):

ω 2= ω 1* r 1 2/ r 2 2

Подставим полученное выражение для (ω 2) в (4.2.5):

Δω рад= (ω 1* r 2 2 – ω 1* r 1 2) / (r 2* r рад) = ω 1* (r 2 2 – r 1 2) / (r 2* r рад)

Примем во внимание, что:

r 1= Vr * t

r 2= Vr * (t + Δt)

ω 1= ω

тогда:

Δω рад= Vr 2* ω * (2 * t * Δt + Δt 2) / (Vr * (t + Δt) * r рад)

Подставим полученное выражение в (4.2.3):

Fк = (m * r рад* Δω рад) / Δt =

= (m * r рад* Vr 2* ω * (2 * t * Δt + Δt 2) / (Vr * (t + Δt) * r рад)) / Δt

Сократим полученное выражение для силы Кориолиса на (Vr * r рад):

Fк = (m * Vr * ω * (2 * t * Δt + Δt 2) / (t + Δt)) / Δt

Преобразуем полученное выражение следующим образом:

Fк = (m * Vr * ω * 2 * Δt * (t + Δt / 2) / (t + Δt)) /Δt

После сокращения на (Δt) получим:

Fк = 2 * m * Vr * ω * (t + Δt / 2) / (t + Δt)

Для малых значений (Δt) в некотором приближении можно допустить:

t + Δt / 2 ≈ t + Δt

Тогда после сокращения выражение для полной силы Кориолиса примет вид:

Fк ≈2* m * Vr * ω * (t + Δt / 2) / (t + Δt)

≈ 2 * m * Vr * ω (4.2.6)

Мы произвели расчёт в полном диапазоне изменения угловой скорости (Δω рад = ω 2 рад – ω 1рад), искусственно дождавшись пока истинная сила Кориолиса-Кеплера изменит линейную скорость от (Vлн = ω 1* r 1) до (Vли = ω 2* r 2). А затем определили закручивающую силу, восстанавливающую начальную линейную скорость (Vлн = ω 1* r 1). По-другому определить непроявленные движения просто невозможно. Для того чтобы определить параметры отсутствующего в реальной действительности движения необходимо сначала дать ему проявиться, хотя бы мысленно, что мы и сделали выше. В реальной действительности этого движения нет, т.к. его компенсирует часть поддерживающей силы. При этом образующееся статическое напряжение в составе классической силы Кориолиса естественно не влияет на динамику поворотного движения (см. гл. 4.3.).

Тем не менее, эта статическая часть и приводит к удвоению классической силы Кориолиса, которое в классической физике связывают с центростремительным ускорением вращения вектора радиальной скорости наверное именно потому, что центростремительное ускорение в классической физике не имеет линейного приращения движения. Этот факт хорошо согласуется с классическим значением ускорения Кориолиса, полученным с помощью классической лже динамики вращательного движения. Но в главе (4.1.) показано, что в составе ускорения Кориолиса центростремительного ускорения как такового нет.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Физика. Порядок вещей, или Осознание знаний. Книга 2»

Представляем Вашему вниманию похожие книги на «Физика. Порядок вещей, или Осознание знаний. Книга 2» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Александр Китайгородский - Физика для всех. Книга 4. Фотоны и ядра
Александр Китайгородский
Александр Китайгородский - Физика для всех. Книга 3. Электроны
Александр Китайгородский
libcat.ru: книга без обложки
Джемс Клиффорд
libcat.ru: книга без обложки
Александр Барков
Юрий Чудинов - Порядок вещей
Юрий Чудинов
Отзывы о книге «Физика. Порядок вещей, или Осознание знаний. Книга 2»

Обсуждение, отзывы о книге «Физика. Порядок вещей, или Осознание знаний. Книга 2» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x