Стивен Вайнберг - Пояснюючи світ

Здесь есть возможность читать онлайн «Стивен Вайнберг - Пояснюючи світ» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2019, Издательство: ООО «ЛитРес», www.litres.ru, Жанр: Физика, Прочая научная литература, sci_popular, на украинском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Пояснюючи світ: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Пояснюючи світ»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Є багато різних наук, і кожна з них пройшла тривалий етап становлення. Та чи замислювалися ви колись над тим, як розвивалася та трансформувалася… сама наука? Якою була її історія? Який сенс вкладали в поняття «наука» у період Античності, Середньовіччя, під час наукової революції XVI–XVII століть? Що змінилося, а що залишилося незмінним? Захоплива мандрівка – від перших експериментів давніх греків до теорії струн та гравітації. Історія фундаментальної науки, що пояснить не лише те, як ми прийшли до розуміння різноманітних речей про світ, а й те, як ми навчилися його пізнавати.

Пояснюючи світ — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Пояснюючи світ», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

хорда θ = 2sin(θ/2).

Отже, будь-яке обчислення, яке можна виконати за допомогою синусів, можна виконати і за допомогою хорд, хоча здебільшого воно менш зручне.

16. Горизонти

Зазвичай роздивитися навкруги на вулиці нам заважають навколишні дерева, будинки або якісь інші перепони. З вершини гори ясної днини можна побачити значно далі, але наше поле зору все ще обмежене горизонтом, за яким лінії прямої видимості закриває сама Земля. Давньоарабський астроном аль-Біруні описав розумний метод використання цього знайомого всім явища для вимірювання радіуса Землі, знаючи при цьому тільки одну відстань – висоту гори.

Рис 10Використання альБіруні горизонтів для вимірювання розміру Землі O - фото 38

Рис. 10.Використання аль-Біруні горизонтів для вимірювання розміру Землі. O – спостерігач на горі заввишки h; H – горизонт, як його бачить цей спостерігач; відрізок від H до O – дотична до земної поверхні в точці H, а тому утворює прямий кут із відрізком від центра Землі C до H.

Уявімо, що спостерігач з точки O на вершині гори може бачити аж до якоїсь точки H на земній поверхні, у якій лінія прямої видимості дотична до цієї поверхні (див. рис. 10). Ця лінія прямої видимості перпендикулярна лінії, що з’єднує H із центром Землі C , тому трикутник OCH прямокутний. Лінія прямої видимості проходить нижче від горизонтального напрямку на певний кут θ, який є малим, бо Земля велика й горизонт значно віддалений. Кут між лінією прямої видимості та вертикальним напрямком униз від вершини гори дорівнює тоді 90° − θ. Тому, оскільки сума кутів будь-якого трикутника дорівнює 180°, гострий кут трикутника в центрі Землі дорівнює 180° − 90° − (90° − θ) = θ. Прилеглий до цього кута катет CH має довжину, що дорівнює радіусу Землі r , а довжина гіпотенузи CO цього трикутника дорівнює r + h , де h – висота гори. Згідно із загальним визначенням, косинус будь-якого кута дорівнює відношенню прилеглої сторони до гіпотенузи, що в цьому випадку дає:

Щоб розвязати це рівняння для r зверніть увагу що обернене рівняння таке 1 - фото 39

Щоб розв’язати це рівняння для r , зверніть увагу, що обернене рівняння таке: 1 + h/r = 1/cosθ, тому, віднявши 1 з обох частин рівняння, а потім взявши обернене значення знову, ми отримаємо:

Наприклад на одній горі в Індії альБіруні знайшов кут θ 34 для якого cosθ - фото 40

Наприклад, на одній горі в Індії аль-Біруні знайшов кут θ = 34´, для якого cosθ = 0,999951092, а 1/cosθ − 1 = 0,0000489. Отже,

r = h /0,0000489 = 20450 h.

Аль-Біруні повідомив, що висота тієї гори становила 652,055 ліктя (зі значно більшою точністю, ніж він міг би якось досягти), що тоді насправді дає r = 13,3 млн ліктів, при тому, що сам він наводить результат у 12,8 млн ліктів. Чому аль-Біруні помилився, мені не відомо.

17. Геометричне доведення теореми про середній градус швидкості

Припустімо, що ми будуємо графік зміни швидкості залежно від часу за рівномірного прискорення (швидкість – по вертикальній осі, а час – по горизонтальній). Цей графік буде представлений прямою лінією, що зростає від нульової швидкості в нульовий час до кінцевої швидкості в кінцевий час. У кожен дуже малий проміжок часу пройдена відстань є добутком швидкості в цей момент часу (якщо цей проміжок часу достатньо короткий, то швидкість змінюється на мізерно малу величину) на тривалість цього часового проміжку. Тобто пройдена відстань дорівнює площі вузького прямокутника, висотою якого є висота графіка в цей момент часу, а шириною – цей дуже малий часовий проміжок (див. рис. 11a). Ми можемо заповнити площу під графіком від початкового до кінцевого часу такими вузькими прямокутниками, і тоді загальна пройдена відстань дорівнюватиме загальній площі всіх цих прямокутників, тобто площі під графіком (див. рис. 11б.)

Рис 11Геометричне доведення теореми про середній градус швидкості Похила - фото 41

Рис. 11.Геометричне доведення теореми про середній градус швидкості. Похила лінія – це графік зміни швидкості залежно від часу для тіла, що рівномірно прискорюється зі стану спокою: a) ширина маленького прямокутника – це короткий часовий проміжок; його площа близька до відстані, пройденої тілом за цей проміжок; б) час упродовж періоду рівномірного прискорення, розбитий на короткі проміжки; у міру збільшення кількості прямокутників сума їхніх площ стає дедалі ближчою до площі під похилою лінією; в) площа під похилою лінією дорівнює половині добутку витраченого часу на кінцеву швидкість.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Пояснюючи світ»

Представляем Вашему вниманию похожие книги на «Пояснюючи світ» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Пояснюючи світ»

Обсуждение, отзывы о книге «Пояснюючи світ» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x