Аналитические теории турбулентности строятся на статическом подходе к описанию турбулентности [10,с.337]. Динамические параметры в этих теориях являются средними характеристиками течения потока.
Модели переноса турбулентности являются упрощенными моделями турбулентности [10,с.337] с эмпирическими параметрами, получаемыми по результатам эксперимента. Динамика взаимодействия между масштабами турбулентной пульсации рассматривается ограниченно.
Метод прямого численного моделирования DNS (Direct Numerical Simulation)
Многие авторы отмечают о том, что этот метод наиболее требователен к вычислительным ресурсам. Однако, в настоящее время существуют центры с суперкомпьютерами, выполняются параллельные вычисления и используются другие способы для выполнения затратных расчетов. На основании этого, метод DNS может быть внедрен в практику расчета проточной части насосов для получения наиболее точного результата расчета.
По методу DNS решаются уравнения Навье-Стокса напрямую непосредственно без применения моделей турбулентности (например, модели «k-ε») в отличии от других методов расчета.
При решении уравнений Навье-Стокса находят для любой точки в потоке скорость течения и давление. Результатом расчета по методу DNS является нахождение этих параметров потока.
По методу DNS возможно выполнение расчета течения для различных значений числа Рейнольдса.
В программных пакетах уравнения Навье-Стокса, то есть дифференциальные уравнения в частных производных, решаются конечно-разностным методам. Из конечно-разностных методов для решения задач гидродинамики используется метод конечных объемов (МКО).
Решение дифференциальных уравнений Навье-Стокса состоит из замены дифференциальных уравнений с назначенными граничными условиями на алгебраические дискретные уравнения и применение конечно-разностного метода решения.
В конечно-разностном методе, как указывается в работе [12,с.26], производная заменяется на алгебраическое отношение . При стремлении размеров ячейки сетки к нулю конечно-разностное отношение стремиться к производной , т.е. решение стремиться к решению дифференциального уравнения. При этом пределом является предел всего разностного уравнения, а не только его отдельных производных.
Операция дискретизации позволяет получить алгебраические уравнения, которые решаются вычислительными средствами применяемого компьютера.
Флетчер в работе [13,с.73] показал пример дискретизации на примере уравнения теплопроводности
на уравнение
В этом уравнении параметр показывает параметр Т в узле (j, n) сетки.
Таким образом, в каждом из узлов находится значение , проблема нахождения непрерывного решения дифференциального уравнения решается нахождением суммы значений.
Решение должно плавно изменяться в промежутках между узловыми точками элементов сетки. Решение в точках, не совпадающих с узловыми точками сетки, находится интерполяцией решений, полученных для окружающих её узловых точек.
Пример построения расчетной (дискретной) сетки по данным [13,с.74]:
Из указанного выше уравнения можно найти неизвестное
по известным значениям
на слое n (временном слое). Такая формула будет являться алгоритмом решения. Полное решение для сетки является суммой решений для всех узлов [13,с.74]:
Процесс дискретизации вносит ошибку. Для окрестности узла, в пределах которой вычисляется производная, ошибка дискретизации находится разложением в ряд Тейлора. Главный член ряда достаточной корректно оценивает ошибку дискретизации при малой величине ΔА (стороне ячейки). Ошибка дискретизации является критерием оценки ошибки решения в зависимости от уменьшения размеров ячеек расчетной сетки.
__
Метод конечных объемов
По методу конечных объемов в пространстве проточной части насоса строится расчетная сетка, структурными элементами которой являются конечные объемы. Трехмерный конечный объем может быть представлен в виде куба, тетраэдра, гексаэдра. В элементе конечного объема уравнения решаются для точки, находящейся геометрическом центре этого элемента. Метод можно назвать «методом частиц в ячейках» [12,с.48].
Читать дальше
Конец ознакомительного отрывка
Купить книгу