Есть еще пример — морские волны, набегающие на берег, или мелкая водяная рябь. Кроме того, существуют два рода упругих волн в твердых телах: волны сжатия (или продольные волны), в которых частицы тела колеблются вперед и назад в направлении распространения волны (звуковые колебания в газе именно такого типа), и поперечные волны, когда частицы тела колеблются перпендикулярно направлению движения волны. При землетрясениях в результате движения участка земной коры возникают упругие волны обоих типов.
И, наконец, есть еще один тип волн, который нам дает современная физика. Это волны, определяющие амплитуду вероятности нахождения частицы в данном месте,— «волны материи», о которых мы уже говорили. Их частота пропорциональна энергии, а волновое число пропорционально импульсу. Эти волны встречаются в квантовой механике.
В этой главе мы будем рассматривать только такие волны, скорость которых не зависит от длины волны. Пример таких волн — распространение света в вакууме. Скорость света в этом случае одна и та же для радиоволн, для синего и зеленого света и вообще для света любой длины волны. Именно поэтому, когда мы описывали волновые явления, мы сначала и не заметили самого факта распространения волн. Вместо этого мы говорили, что если перенести заряд в некоторую точку, то электрическое поле на расстоянии х будет пропорционально ускорению заряда, но не в момент времени t , а в более ранний момент времени t - x / c . Поэтому распределение электрического поля в пространстве в некоторый момент времени, изображенное на фиг. 47.2, спустя время t передвинется на расстояние ct . Выражаясь математически, можно сказать, что в рассматриваемом нами одномерном случае электрическое поле есть функция от x - ct . Отсюда видно, что при t=0 оно оказывается функцией только х . Если взять более поздний момент времени и несколько увеличить х , мы получим ту же самую величину поля. Например, если максимум поля возникает при x=3 и в момент времени t=0, то положение максимума в момент времени t находится из равенства

Мы видим, что такая функция отвечает распространению волны. Итак, функция f ( x - ct ) описывает волну. Мы можем все сказанное записать кратко так:

если Δx=cΔt. Конечно, существует еще и другая возможность, когда источник излучает волны не направо, как указано на фиг. 47.2, а налево, так что волны будут двигаться в сторону отрицательных х .

Фиг. 47.2. Примерное распределение электрического поля в некоторый момент времени (а) и электрическое поле через промежуток времени t (b).
Тогда распространение волны описывалось бы функцией g ( x + ct ).
Может еще случиться, что в пространстве одновременно движется несколько волн, и тогда электрическое поле есть сумма всех полей и все они распространяются независимо. Это свойство электрических полей можно выразить так: пусть f 1( x - ct ) отвечает одной волне, а f 2( x - ct ) — другой, тогда их сумма также описывает некоторую волну. Это утверждение называется принципом суперпозиции . Он справедлив и для звуковых волн.
Мы хорошо знаем, что звуки воспринимаются в той последовательности, в какой они создаются источником. А если бы высокие частоты распространялись быстрее, чем низкие, то вместо звуков музыки мы слышали бы резкий и отрывистый шум. Точно так же если бы красный свет двигался быстрее, чем синий, то вспышка белого света выглядела бы сначала красной, затем белой и наконец синей. Мы хорошо знаем, что такого на самом деле не происходит. И звук, и свет движутся в воздухе со скоростью, почти не зависящей от частоты. Примеры волнового движения, где этот принцип не выполняется, будут рассмотрены в гл. 48.
Для света (электромагнитных волн) мы получили формулу, определяющую электрическое поле в данной точке, которое возникает при ускорении заряда. Казалось бы, нам остается теперь подобным образом определить какую-нибудь характеристику воздуха, скажем давление на заданном расстоянии от источника через движение источника, и учесть запаздывание при распространении звука.
Читать дальше