Рассмотрим теперь случай обратного вращения. Что происходит здесь? Чтобы храповик повернулся назад, надо лишь снабдить собачку такой энергией, чтоб ей хватило сил подняться и пропустить храповик. Эта энергия по-прежнему равна ε. Вероятность (в пересчете на секунду) того, что собачка поднимется на нужную высоту, теперь равна (1/τ)ехр(-ε/ kT 2). (Множитель пропорциональности тот же, но в показателе стоит kT 2из-за того, что температура иная.) Когда это случается, т. е. зубчатка проскальзывает назад, работа уже высвобождается (высвободился один зубец, а вместе с ним и работа Lθ). Энергия, взятая у системы храповик — собачка, есть ε, а энергия, переданная газу на другом конце оси при температуре T 1есть Lθ+ε. Это тоже легко понять. Положим, что собачка поднялась сама собой за счет флуктуации. Когда она упадет и пружинка ударит ее по зубцу, возникнет сила, стремящаяся повернуть зубчатку, ведь плоскость-то, о которую ударилась собачка, наклонная. Эта сила производит работу; то же можно сказать о весе грузика. Обе силы суммируются, и вся медленно высвобождаемая энергия появляется в виде тепла на той стороне, где вертушка. (Конечно, так и должно быть по закону сохранения энергии, но мы обязаны осторожно продумать все насквозь!)
Мы замечаем, что все эти энергии в точности те же, что и раньше, только переставлены. Итак, смотря по тому, какое из отношений больше, грузик либо медленно поднимается, либо медленно опускается. Конечно, на самом деле он непрерывно ходит туда-сюда, покачивается, но мы говорим об усредненном поведении.
Положим, что при определенном весе вероятности окажутся равными. Тогда привесим к нити бесконечно легкий грузик. Весь груз медленно пойдет вниз, и машина будет совершать работу, энергия будет откачиваться от храповика и пересылаться вертушке. Если же убрать часть груза, неравновесность перекинется на другую сторону. Груз поднимается, тепло отбирается от вертушки и поставляется шестерне. Мы попадаем в условия обратимого цикла Карно благодаря тому, что груз выбран как раз так, чтобы обе вероятности были равны. Это условие таково: (ε+Lθ)/T 1=ε/T 2. Пусть машина медленно тянет груз вверх.
Таблица 46.1 ОПЕРАТИВНАЯ СВОДКА ДЕЙСТВИЙ ХРАПОВИКА И СОБАЧКИ

Энергия Q 1отбирается от лопастей, а энергия Q 2доставляется шестерне, и эти энергии находятся в отношении (ε+Lθ)/ε. Когда мы опускаем груз, то опять Q 1/ Q 2=(ε+ L θ)/ε. Итак (табл. 46.1), мы имеем

Далее, полученная работа относится к энергии, взятой у вертушки, как Lθ к Lθ+ε, т. е. как (T 1-Т 2)/Т 1. Мы видим, что наше устройство, работая обратимо, ни за что не сможет высосать работы больше, чем позволяет это отношение. Это тот вывод, которого мы и ожидали на основе доказательства Карно, а одновременно и главный результат этой лекции.
Однако мы можем использовать наше устройство, чтобы понять еще кое-какие явления, даже неравновесные, лежащие вне области применимости термодинамики.
Давайте подсчитаем теперь, как быстро наш односторонний механизм будет вращаться, если все его части одинаково нагреты, а к барабану подвешен грузик. Если мы потянем чересчур сильно, могут произойти любые неприятности. Собачка соскользнет вдоль храповика, пружинка лопнет или еще что-нибудь случится. Но предположим, мы тянем так осторожно, что все работает гладко. В этих условиях верен вышеприведенный анализ вероятностей поворота храповика вперед или назад, и нужно только учесть равенство температур. С каждым скачком валик поворачивается на угол θ, так что угловая скорость равна величине θ, помноженной на вероятность одного из этих скачков в секунду. Ось поворачивается вперед с вероятностью (1/τ) ехр [-ε+ L θ)/ kT ], а назад она поворачивается с вероятностью (1/τ) ехр (-ε/ kT ). Угловая скорость равна
(46.1)
График зависимости ω от L показан на фиг. 46.2.

Фиг. 46.2. Угловая скорость храповика как функция вращательного момента.
Читать дальше