Мы уже успели узнать, что

Подставляя выражение для I(ω) в наше уравнение для U / V , получаем

Если сделать замену переменных x = ℏ ω/ kT , то это выражение примет вид

Этот интеграл — просто-напросто какое-то число, и мы можем найти его приближенно. Для этого надо лишь вычертить подынтегральную кривую и подсчитать площадь под ней. Она приблизительно равна 6,5. Математики могут вычислить наш интеграл точно, он равен π 4/15 [34] Поскольку (e x -1) -1 =е -x +е -2x +..., то интеграл равен n=1 ∑ ∞ 0 ∫ ∞ e - nx x 3 dx . Но 0 ∫ ∞ e - nx dx =1/ n , поэтому, дифференцируя три раза по n, мы получаем 0 ∫ ∞ e - nx x 3 dx =6/ n 4 , так что интеграл равен 6 (1+ 1 / 16 + 1 / 81 +...), и несколько первых членов ряда дают уже хорошее приближение. В гл. 50 мы сможем показать, что сумма обратных четвертых степеней целых чисел равна π 5 /90.
. Сравнивая это выражение с записанным ранее U / V =(4σ/ с ) T 4, мы найдем σ:

Много ли энергии утечет за 1 сек из дырки единичной площади, проделанной в стенке ящика? Чтобы найти поток энергии, умножим плотность энергии U / V на с . Еще нужно умножить на 1/ 4; эта четверть набегает вот по каким причинам. Во-первых, 1/ 2появляется из-за того, что мы вычисляем только вырвавшуюся наружу энергию, и, во-вторых, если поток подходит к дырке не под прямым углом, то вырваться ему труднее; это уменьшение эффективности учитывается умножением на косинус угла с нормалью. Среднее значение косинуса равно 1/ 2. Теперь понятно, почему мы писали U / V =(4σ/ c ) T 4: так проще выразить поток энергии сквозь маленькую дырку; если отнести поток к единичной площади, то он равен просто σ T 4.
Глава 46 ХРАПОВИК И СОБАЧКА
§ 1. Как действует храповик
В этой главе мы поговорим о храповике и собачке — очень простом устройстве, позволяющем оси вращаться только в одном направлении. Возможность получать одностороннее вращение заслуживает глубокого и тщательного анализа, из него проистекут интересные заключения.
Вопросы, которые мы будем обсуждать, возникают при попытке найти с молекулярной или кинетической точки зрения простое объяснение тому, что существует предел работы, которая может быть получена от тепловой машины. Правда, мы уже знаем сущность доказательства Карно, но было бы приятно найти и элементарное его объяснение — такое, которое показало бы, что так физически на самом деле происходит. Существуют, конечно, сложные, покоящиеся на законах Ньютона математические доказательства ограниченности количества работы, которое можно получить, когда тепло перетекает с одного места в другое; но очень непросто сделать эти доказательства элементарными. Короче говоря, мы не понимаем их, хотя можем проследить выкладки.
В доказательстве Карно то обстоятельство, что при переходе от одной температуры к другой нельзя извлечь неограниченное количество тепла, следует из другой аксиомы: если все происходит при одной температуре, то тепло не может быть превращено в работу посредством циклического процесса. Поэтому первым делом попытаемся понять, хотя бы на одном элементарном примере, почему верно это более простое утверждение.
Попробуем придумать такое устройство, чтобы второй закон термодинамики нарушался, т. е. чтобы работу из теплового резервуара получали, а перепада температур не было. Пусть в сосуде находится газ при некоторой температуре, а внутри имеется вертушка (фиг. 46.1), причем будем считать, что T 1= T 2= T .

Фиг. 46.1. Машина, состоящая из храповика и собачки.
От ударов молекул газа вертушка будет покачиваться. Нам остается лишь пристроить к другому концу оси колесико, которое может вертеться только в одну сторону,— храповичок с собачкой. Собачка пресечет попытки вертушки поворачиваться в одну сторону, а повороты в другую—разрешит. Колесико будет медленно поворачиваться; может быть, удастся даже подвесить на ниточку блошку, привязать нить к барабану, насаженному на ось, и поднять эту блошку!
Читать дальше