Отсюда следует, что любой цвет, полученный смешением двух заданных цветов, изображается точкой, лежащей на линии, которая соединяет оба выбранных цвета. Например, смесь, составленная из равных частей обоих цветов, лежит на середине соединяющего их отрезка; смесь из 1/ 4одного цвета и 3/ 4другого лежит на расстоянии 1/ 4длины отрезка и т. д.
Если в качестве основных цветов выбрать красный, зеленый и синий, то все цвета, получаемые из них с положительными коэффициентами, лежат внутри треугольника, изображенного на рисунке пунктиром. По существу, треугольник содержит почти все цвета, которые мы видим, поскольку вообще все цвета, доступные нашему зрению, заключены внутри кривой довольно странной формы, немного выступающей за треугольник. Откуда взялась эта кривая? Кто-то когда-то весьма тщательно составил смеси всех видимых цветов из трех выбранных. Но мы не будем проверять все цвета; достаточно исследовать лишь чистые спектральные тона, линии спектра. Любой цвет можно рассматривать как сумму чистых спектральных тонов с различными, но положительными коэффициентами (чистых с физической точки зрения). Любой цвет состоит из некоторых количеств красного, желтого, синего и т. д. по всем цветам спектра. Зная, как составлены спектральные тона из трех основных цветов, можно вычислить необходимую пропорцию основных цветов и для какого угодно цвета. Поэтому, определив цветовые коэффициенты всех спектральных тонов по отношению к трем основным цветам, легко составить полную таблицу смешения цветов.

Фиг. 35.5. Цветовые коэффициенты чистых спектральных тонов для некоторого выбора основных цветов. 1 — красный; 2 — зеленый; 3 — синий.
В качестве примера на фиг. 35.5 приведены опытные данные по смешению трех цветов. Кривые показывают количество каждого из трех основных цветов (красного, зеленого, синего), образующих при смешении любой из цветов спектра. Красный цвет расположен на левом конце спектра, следом идет желтый цвет и т. д. до синего цвета, расположенного на правом краю. Заметьте, что в некоторых случаях необходимо брать отрицательные коэффициенты. Именно из таких данных и были определены положения точек для всех цветов на диаграмме, причем координаты х и у связаны с относительными количествами основных цветов, использованных для получения различных цветов. Отсюда же была найдена и граничная кривая диаграммы. Она представляет собой геометрическое место всех чистых спектральных тонов. Но каждый цвет может быть получен смешением спектральных тонов, поэтому любой цвет на линии, соединяющей две произвольные точки кривой, существует в природе. На диаграмме прямая соединяет крайний фиолетовый и далекий красный концы спектра. На ней расположены пурпурные цвета. Внутри кривой находятся те цвета, которые могут быть получены с помощью света, а цвета вне кривой вообще не могут быть созданы светом, и никто их никогда не видел (разве только во сне!).
§ 5. Механизм цветового зрения
Первый вопрос, который возникает по поводу изложенных закономерностей: почему цвета ведут себя таким образом?
Простейшая теория, предложенная Юнгом и Гельмгольцем, предполагала, что глаз обладает тремя сортами пигментов, восприимчивых к свету, и что спектры поглощения этих пигментов разные, скажем, один сильно поглощает красный свет, другой — синий, а третий — зеленый. Поэтому когда свет попадает в глаз, поглощение в каждой из трех областей происходит по-разному, а, исследуя разную поступающую информацию, наш мозг, или глаз, или еще что-то решает, какой цвет попал в глаз. Легко показать, что из предположения о трех сортах пигментов вытекают все правила смешения цветов.
Дальше, казалось бы, оставалось определить кривые поглощения всех трех пигментов, но по этому поводу возникли серьезные разногласия. К несчастью, оказалось, что можно найти только всевозможные линейные комбинации кривых поглощения, а не сами кривые для каждого пигмента в отдельности, потому что координаты на диаграмме могут быть повернуты любым образом. Пробовали использовать самые разные пути для получения кривых, характеризующих отдельные физические свойства глаза. Одна из таких кривых, называемая кривой яркости , представлена на фиг. 35.3.
Читать дальше