Ричард Фейнман - Том 1. Механика, излучение и теплота

Здесь есть возможность читать онлайн «Ричард Фейнман - Том 1. Механика, излучение и теплота» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 1. Механика, излучение и теплота: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 1. Механика, излучение и теплота»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Том 1. Механика, излучение и теплота — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 1. Механика, излучение и теплота», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

169 Перейдем к предельному случаю когда w стремится к нулю При очень - фото 396(16.9).

Перейдем к предельному случаю, когда w стремится к нулю. При очень малых w величины v и u практически совпадут, m wm 0, а m vm u . Окончательный результат таков:

1610 Проделайте теперь такое интересное упражнение проверьте будет ли - фото 397(16.10)

Проделайте теперь такое интересное упражнение: проверьте, будет ли выполнено условие (16.9) при произвольных w, когда масса подчиняется формуле (16.10). При этом скорость v , стоящую в уравнении (16.9), можно найти из прямоугольного треугольника

Вы увидите что 169 выполняется тождественно хотя выше нам понадобился - фото 398

Вы увидите, что (16.9) выполняется тождественно, хотя выше нам понадобился только предел этого равенства при w →0. Теперь перейдем к дальнейшим следствиям, считая уже, что, согласно (16.10), масса зависит от скорости. Рассмотрим так называемое неупругое столкновение . Для простоты предположим, что из двух одинаковых тел, сталкивающихся с равными скоростями w , образуется новое тело, которое больше не распадается (фиг. 16.4,а).

Фиг 164 Две картины неупругого соударения тел равной массы Массы тел до - фото 399

Фиг. 16.4. Две картины неупругого соударения тел равной массы.

Массы тел до столкновения равны, как мы знаем, m 0/√(1- w 2/ c 2). Предположив сохраняемость импульса и приняв принцип относительности, можно продемонстрировать интересное свойство массы вновь образованного тела. Представим себе бесконечно малую скорость u , поперечную к скоростям w (можно было бы работать и с конечной скоростью и , но с бесконечно малым значением и легче во всем разобраться), и посмотрим на это столкновение, двигаясь в лифте со скоростью - u . Перед нами окажется картина, изображенная на фиг. 16.4, а. Составное тело обладает неизвестной массой М . У тела 1, как и у тела 2, есть компонента скорости и , направленная вверх, и горизонтальная компонента, практически равная w . После столкновения остается масса М , движущаяся вверх со скоростью u , много меньшей и скорости света и скорости w . Импульс должен остаться прежним; посмотрим поэтому, каким он был до столкновения и каким стал потом. До столкновения он был равен p ~=2 m w u, а потом стал р '= M u u . Но M u из-за малости u, по существу, совпадает с М 0. Благодаря сохранению импульса

Том 1 Механика излучение и теплота - изображение 400(16.11)

Итак, масса тела, образуемого при столкновении двух одинаковых тел, равна их удвоенной массе . Вы, правда, можете сказать: «Ну и что ж, это просто сохранение массы». Но не торопитесь восклицать: «Ну и что ж!», потому что сами - то массы тел были больше, чем когда тела неподвижны . Они вносят в суммарную массу М не массу покоя, а больше . Не правда ли, поразительно! Оказывается, сохранение импульса в столкновении двух тел требует, чтобы образуемая ими масса была больше их масс покоя, хотя после столкновения эти тела сами придут в состояние покоя!

§ 5. Релятивистская энергия

Немного выше мы показали, что зависимость массы от скорости и законы Ньютона приводят к тому, что изменения в кинетической энергии тела, появляющиеся в результате работы приложенных к нему сил, оказываются всегда равными

1612 Потом мы продвинулись дальше и обнаружили что полная энергия тела - фото 401(16.12)

Потом мы продвинулись дальше и обнаружили, что полная энергия тела равна полной его массе, умноженной на с 2. Продолжим эти рассуждения.

Предположим, что наши два тела с равными массами (те, которые столкнулись) можно «видеть» даже тогда, когда они оказываются внутри тела М . Скажем, протон с нейтроном столкнулись, но все еще продолжают двигаться внутри М . Масса тела М , как мы обнаружили, равна не 2 m 0, а 2 m w . Этой массой 2 m w снабдили тело его составные части, чья масса покоя была 2m 0; значит, избыток массы составного тела равен привнесенной кинетической энергии. Это означает, конечно, что у энергии есть инерция . Ранее мы говорили о нагреве газа и показали, что поскольку молекулы газа движутся, а движущиеся тела становятся массивнее, то при нагревании газа и усилении движения молекул газ становится тяжелее. Но на самом деле такое рассуждение является совершенно общим; наше обсуждение свойств неупругого соударения тоже показывает, что добавочная масса появляется всегда, даже тогда, когда она не является кинетической энергией. Иными словами, если две частицы сближаются и при этом образуется потенциальная или другая форма энергии, если части составного тела замедляются потенциальным барьером, производя работу против внутренних сил, и т. д.,— во всех этих случаях масса тела по-прежнему равна полной привнесенной энергии. Итак, вы видите, что выведенное выше сохранение массы равнозначно сохранению энергии, поэтому в теории относительности нельзя говорить о неупругих соударениях, как это было в механике Ньютона. Согласно механике Ньютона, ничего страшного не произошло бы, если бы два тела, столкнувшись, образовали тело с массой 2 m 0, не отличающееся от того, какое получилось бы, если их медленно приложить друг к другу. Конечно, из закона сохранения энергии мы знаем, что внутри тела имеется добавочная кинетическая энергия, но по закону Ньютона на массу это никак не влияет. А теперь выясняется, что это невозможно: поскольку до столкновения у тел была кинетическая энергия, то составное тело окажется тяжелее ; значит, это будет уже другое тело. Если осторожно приложить два тела друг к другу, то возникает тело с массой 2 m 0; когда же вы их с силой столкнете, то появится тело с большей массой. А если масса отличается, то мы можем это заметить . Итак, сохранение импульса в теории относительности с необходимостью сопровождается сохранением энергии.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 1. Механика, излучение и теплота»

Представляем Вашему вниманию похожие книги на «Том 1. Механика, излучение и теплота» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 1. Механика, излучение и теплота»

Обсуждение, отзывы о книге «Том 1. Механика, излучение и теплота» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x