
то работа равна

Стало быть, вся работа равна сумме работ, произведенных против силы 1 и против силы 2, как если бы они действовали независимо. Продолжая рассуждать таким образом, мы увидим, что полная работа, которую необходимо выполнить, чтобы собрать данную конфигурацию тел, в точности равна значению (13.14) для потенциальной энергии. Именно из-за того, что тяготение подчиняется принципу наложения сил, можно потенциальную энергию представить в виде суммы по всем парам частиц.
§ 4. Поле тяготения больших тел
Теперь рассчитаем поля, встречающиеся во многих физических задачах, когда речь идет о распределении масс . Мы пока не рассматривали распределения масс, а занимались только отдельными частицами. Но интересно рассчитать и поля, образуемые более чем одной частицей. Для начала найдем силу притяжения со стороны плоского пласта вещества бесконечной протяженности. Сила притяжения единичной массы в данной точке Р (фиг. 13.5), конечно, направлена к плоскости.

Фиг. 13.5. Сила притяжения материальной точки материальной плоскостью.
Расстояние от точки до плоскости есть a , а масса единицы площади этой плоскости есть μ. Пусть μ будет постоянной: слой однороден. Какой же величины поле d Cсоздается массой dm , удаленной от О не ближе, чем на p , и не дальше, чем на p+dp (О — это точка плоскости, ближайшая к Р)? Ответ: d C= G ( dm r/ r 3). Но оно, это поле, направлено вдоль r , а мы понимаем, что из трех составляющих Спосле сложения всех d Cдолжна остаться лишь x -составляющая. Она равна

Все массы dm , которые находятся на одном и том же расстоянии r от Р , дадут одно и то же значение dC x , так что за dm можно сразу принять массу всего кольца между p и p + dp , т. е. dm =μ2π pdp (2π pdp — это площадь кольца радиусом p и шириной dp при dp ≪ p ). Итак,

Но pdp=rdr из-за того, что r 2=p 2+a 2. Поэтому
(13.17)
Стало быть, сила не зависит от расстояния а! Почему? Не ошиблись ли мы? Казалось бы, чем дальше от плоскости, тем сила слабее. Но нет! Если точка находится вплотную к плоскости, то большая часть вещества притягивает ее под неудачными углами, а если вдалеке, то у большей части вещества притяжение направлено прямее к плоскости. На любом расстоянии самая «влиятельная» часть плоскости лежит в некотором конусе. С удалением сила ослабляется обратно пропорционально квадрату расстояния, но в том же конусе под тем же углом оказывается больше вещества , а рост количества вещества тоже пропорционален квадрату расстояния! Этот анализ может быть сделан более строгим, если заметить, что дифференциал вклада любого данного конуса не зависит от расстояния в результате противоположных изменений напряженности поля данной массы и количества самой этой массы (с ростом расстояния). Впрочем, на самом деле сила не постоянна, ибо на другой стороне плоскости она меняет знак.
Мы решили, кстати, и задачу по электричеству: мы доказали, что у заряженной пластины, каждая единица площади которой несет заряд σ, электрическое поле равно σ/2ε 0и направлено от пластины , если она заряжена положительно, и к ней , если она заряжена отрицательно. Чтобы доказать это, надо просто вспомнить, что в законе тяготения G играет ту же роль, что 1/4πε 0в электричестве.
А теперь пусть имеются две пластины, одна с положительным зарядом +σ, а другая с отрицательным -σ (на единицу площади), и пусть промежуток между ними равен D . Каково поле этих пластин? Снаружи пластин поле равно нулю. Отчего? Оттого, что одна из них отталкивает, а другая притягивает и у обеих сила не зависит от расстояния ; значит, силы всюду уничтожаются! А вот поле между пластинами вдвое больше, чем поле одной пластины, направлено оно от положительной пластины к отрицательной и равно Е =σ/ε 0.
Читать дальше