Повседневный опыт нас убедил, что чем крупнее вещь, тем она заметнее и тем легче ее обнаружить. Ведь разыскать в комнате пропавшую книгу несравненно легче, чем маленькую иголку. Казалось бы, так же должны обстоять дела и с поиском тяжелых частиц.
Но в опытах на ускорителях кварки не ищут, а пытаются «создать». И энергия столкновения, необходимая для того, чтобы вызвать к жизни этот фантастический призрак микромира, должна быть прямо пропорциональна массе кварка.
Все опыты, проведенные на ускорителях до сих пор, закончились отрицательным результатом: свободные кварки не были найдены. По-видимому, ускоренным протонам пока еще не хватает энергии для рождения тяжелого кварка.
Если отбросить крайне завышенную и крайне заниженную оценки массы кварка, как это делается при оценке выступлений фигуристов, то наиболее приемлемой кажется величина в несколько протонных масс.
Но как можно из трех кварков, каждый из которых в несколько раз тяжелее протона, сложить протон? Задача эта не столь уж неразрешима, как кажется. Ядро дейтерия — тяжелого изотопа водорода — состоит из протона и нейтрона, а масса его чуть меньше суммы масс протона и нейтрона. И масса любого ядра всегда меньше суммы масс всех его нейтронов и протонов. Разница идет на энергию взаимодействия, удерживающего нуклоны в ядре.
Посмотрите, как двухлетний малыш легко укладывает в коробку вынутые из нее кубики. Здесь все просто. Общий объем кубиков в точности соответствует объему самой коробки. Но предложите ему уложить в маленькую коробку три огромных надутых резиновых шара. Такую просьбу он воспримет просто как шутку или издевательство. Она покажется ему совершенно невыполнимой.
А между тем задача эта совершенна аналогична той, о которой только что шла речь: как представить себе протон, состоящий из трех тяжелых кварков? Коробка с тремя шариками подскажет ее решение.
Давайте выпустим из каждого шарика столько воздуха, чтобы все они поместились в эту маленькую коробочку. И вот перед вами наглядная модель протона из трех кварков. Не беда, что кварки теряют чуть не 90 процентов своей массы, которая, подобно воздуху из шариков, выделяется при соединении в одну элементарную частицу.
Возможно, кварки неуловимы из-за того, что у существующих ускорителей не хватает энергии, чтобы «надуть» кварковые «шарики»?
Обратимся тогда к космическим лучам. Может быть, у них хватит на это энергии?
В атмосферу Земли посланцы далеких миров попадают с необыкновенно большой энергией. Энергия космических лучей в сто и тысячу миллионов раз больше той, которую могут сообщить протонам ускорители. И что, если там, в заоблачных высях, в ядерных катастрофах рождаются необыкновенные кварки?
Ученые тщательно пересмотрели множество облученных в космических лучах фотоэмульсий, но все безрезультатно.
И вдруг осенью 1969 года научный мир всколыхнуло известие, полученное с Международной конференции в Будапеште. Руководитель центра по изучению космических лучей в Австралии профессор Маккаскер сообщил об открытии кварков!
Он помещал камеру Вильсона в центр широких атмосферных ливней — плотных потоков частиц, — которые создавались протонами чудовищной энергии в 10 19-10 20электрон-вольт, приходящих из глубины космоса. И именно здесь Маккаскер и нашел, как ему показалось, эти гипотетические частицы. Среди 60 000 следов частиц, сфотографированных в камере Вильсона, пять оказались вдвое бледнее. Это как будто соответствовало вдвое меньшей ионизации. Именно такой след и должны были оставить кварки с зарядом, равным 2/ 3заряда электрона.
Опыт Маккаскера стал сенсацией в научно-популярной прессе. Но ученые, непосредственно заинтересованные в открытии кварков, были гораздо сдержаннее.
Несомненно, что следы на фотографиях Маккаскера были похожи на кварковые, но существует множество посторонних причин, по которым следы эти могли возникнуть. В сообщении австралийского ученого не было главного — контрольного анализа, и это сразу поставило под сомнение результат эксперимента.
В то время как одни искали кварки на ускорителях, а другие в космических лучах, третьи пытались обнаружить их в тончайших экспериментах на… лабораторном столе.
«Не мытьем так катаньем», — говорит народная поговорка. «Не можем создать, так будем искать», — решили ученые.
Читать дальше