Маркус Чаун - Гравитация. Последнее искушение Эйнштейна

Здесь есть возможность читать онлайн «Маркус Чаун - Гравитация. Последнее искушение Эйнштейна» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2017, Жанр: Физика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Гравитация. Последнее искушение Эйнштейна: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Гравитация. Последнее искушение Эйнштейна»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Разгадав тайну гравитации, мы сможем ответить на величайшие вопросы науки: что такое пространство? Что такое время? Что такое Вселенная? Откуда все это взялось?
Прославленный научно-популярный автор Маркус Чаун приглашает вас в увлекательное путешествие — с того момента, как в 1666 году гравитация была признана физической силой, до открытия гравитационных волн в 2015 году. Близится тектонический сдвиг в наших представлениях о физике, и эта книга рассказывает, какие вопросы ставит перед нами феномен гравитации.

Гравитация. Последнее искушение Эйнштейна — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Гравитация. Последнее искушение Эйнштейна», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Однако если никто никогда не наблюдал атом кислорода (или, если уж на то пошло, любое другое тело) в двух местах одновременно, то какая разница, имеет ли место квантовая суперпозиция? Но дело в том, что у неё есть последствия , которые приводят к необычным событиям в микромире.

Приведу простой пример. Два совершенно одинаковых шара для боулинга сталкиваются и рикошетят друг от друга, отлетая в противоположные стороны от точки соприкосновения. Теперь допустим, что эти столкновения повторяются, а мы фиксируем направление полёта: на два часа и восемь часов, затем на четыре часа и десять часов и так далее. После того как этот процесс воспроизведётся сотни раз, не останется ни одного направления, в котором не двигался бы каждый шар.

Теперь давайте заменим шары в этом эксперименте на два одинаковых квантовых объекта, например электрона или атома кислорода. Если мы столкнём их несколько сотен раз, то заметим, что в некоторых направлениях частицы никогда не перемещаются: например, на три часа и девять часов или на пять часов и одиннадцать часов. Почему это происходит? По этим направлениям пики вероятностной волны одной из частиц совпадают с самыми низкими значениями вероятностной волны второй частицы. Они гасят друг друга, сводя вероятность обнаружения частиц на данных направлениях к нулю.

Суть в том, что благодаря интерференции две квантовые волны в суперпозиции могут взаимодействовать друг с другом ещё до того, как наблюдатель обнаружит частицу. Из-за этого могут возникать неожиданные последствия, например неспособность сталкивающихся частиц разлететься в определённых направлениях.

Это также объясняет, почему электрон, движущийся по орбитали вокруг атомного ядра, не падает на него, как предсказывает теория Максвелла. Существуют миллионы траекторий, по которым электрон может двигаться в направлении ядра: прямая, спираль и так далее. С каждой из них связана своя квантовая волна. Поблизости от ядра эти волны гасят друг друга, а значит, вероятности обнаружить там электрон нет.

Данный пример показывает ещё одно фундаментальное отличие квантовой физики от доквантовой. В классической физике тело (например, Луна) движется по чётко заданной уникальной траектории. Квантовая теория говорит, что такой траектории не существует. Между двумя моментами наблюдения электрон может двигаться по миллиону разных траекторий, для каждой из которых существует своя вероятность.

Если суперпозиция кажется вам недостаточно странным феноменом, подумайте о том, что квантовые явления могут комбинироваться, создавая невероятные сочетания — например, нелокальность или жуткое дальнодействие, которые Эйнштейн считал слишком безумными для реальной теории. Чтобы понять их, давайте для начала разберёмся, что такое спин.

Сверхзвуковое воздействие

Наряду с корпускулярно-волновым дуализмом и непредсказуемостью спин — это ещё одно квантовое свойство, не имеющее аналогов в нашем мире. Представьте себе фигуриста, который вращается на льду. Он обладает так называемым угловым моментом, рассчитываемым как импульс его тела, умноженный на среднее расстояние от оси, вокруг которой происходит вращение. Значение углового момента (как и импульса, и энергии) является фиксированным и не может быть создано или уничтожено. Поэтому, когда фигурист прижимает руки к бокам, тем самым сокращая расстояние между своим телом и осью вращения, он начинает вращаться быстрее для компенсации изменений.

В квантовом мире частицы (например, электроны) ведут себя так, как будто они вращаются, хотя никакого вращения на самом деле не происходит. Они обладают внутренним спином. Как и всё в микромире, он измеряется в невидимых квантах. Исторически сложилось так, что фундаментальной единицей спина является 1/2 от определённого значения (ℎ/2π). Такой спин переносится электроном. При этом электрон может вращаться либо по часовой стрелке, либо против неё, хотя на самом деле он не вращается. Физики предпочитают говорить, что в таком случае спин электрона направлен вверх или вниз.

Теперь давайте посмотрим, как спин в комбинации с некоторыми другими квантовыми свойствами, а именно суперпозицией и непредсказуемостью, приводит к возникновению феномена жуткого дальнодействия.

Возьмём два электрона. Первый из них имеет спин, направленный вверх, а второй — вниз. Или наоборот. Главное, что в такой ситуации возможна суперпозиция, при которой два электрона имеют спины, направленные одновременно вверх и вниз и вниз и вверх.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Гравитация. Последнее искушение Эйнштейна»

Представляем Вашему вниманию похожие книги на «Гравитация. Последнее искушение Эйнштейна» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Гравитация. Последнее искушение Эйнштейна»

Обсуждение, отзывы о книге «Гравитация. Последнее искушение Эйнштейна» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x