Маркус Чаун - Гравитация. Последнее искушение Эйнштейна

Здесь есть возможность читать онлайн «Маркус Чаун - Гравитация. Последнее искушение Эйнштейна» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2017, Жанр: Физика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Гравитация. Последнее искушение Эйнштейна: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Гравитация. Последнее искушение Эйнштейна»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Разгадав тайну гравитации, мы сможем ответить на величайшие вопросы науки: что такое пространство? Что такое время? Что такое Вселенная? Откуда все это взялось?
Прославленный научно-популярный автор Маркус Чаун приглашает вас в увлекательное путешествие — с того момента, как в 1666 году гравитация была признана физической силой, до открытия гравитационных волн в 2015 году. Близится тектонический сдвиг в наших представлениях о физике, и эта книга рассказывает, какие вопросы ставит перед нами феномен гравитации.

Гравитация. Последнее искушение Эйнштейна — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Гравитация. Последнее искушение Эйнштейна», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Шрёдингер создал своё уравнение, отправившись в выходные со своей девушкой в горы покататься на лыжах. Гениальность этого уравнения состоит в том, что оно объединяет волновую и корпускулярную половины реальности. Данное математическое решение фиксирует существование в природе корпускулярно-волнового дуализма и позволяет физикам проводить расчёты в реальном мире. В том же году, в котором появилось уравнение Шрёдингера, Гейзенберг вместе с Максом Борном и Паскуалем Йорданом разработали матричную механику — версию квантовой теории, которая внешне кажется отличной от неё, но на самом деле говорит о том же самом.

Множественные реальности

Корпускулярно-волновой дуализм — это палка о двух концах. В 1923 году французский физик Луи де Бройль предположил, что не только световые волны могут вести себя как локализованные частицы, но и частицы, например электроны, могут демонстрировать волновое поведение. Это звучало как полная бессмыслица. Но в 1927 году Клинтон Дэвиссон и Лестер Джермер в США и Джордж Томсон в Шотландии выяснили, что электроны могут интерферировать друг с другом и что при этом их квантовые волны усиливаются или гасятся, как рябь, бегущая по поверхности озера. Интересно, что отцом Джорджа Томсона был Дж. Дж. Томсон, открывший электрон. Отец получил Нобелевскую премию за то, что доказал корпускулярную природу электрона, а его сын — за то, что опроверг её.

Открытие волн, ведущих себя как частицы, имело шокирующие последствия для физики, равно как и открытие частиц, ведущих себя как волны. Оказалось, что фундаментальные строительные блоки материи способны делать множество вещей, доступных волнам, и хотя в нашей реальности их последствия незаметны, их воздействие на микромир огромно.

Представьте себе море: оно волнуется во время шторма, но постепенно ветер спадает и остаётся лишь мелкая рябь. Если вы наблюдали оба этих вида волн, то знаете, что иногда они могут сочетаться друг с другом: на поверхности большой волны появляются мелкие. Подобный эффект возникает не только в океане, но и во всех типах волн. Если существует две волны, может существовать и их комбинация, или суперпозиция. Казалось бы, это банальное наблюдение, но в микромире оно имеет огромное значение.

Вообразите себе квантовую волну, которая представляет собой атом кислорода (по-научному такая волна вероятности будет именоваться волновой функцией). Допустим, что в правом углу комнаты она имеет высокую амплитуду. Иными словами, у нас есть почти 100%-ный шанс найти там атом кислорода. В этом нет ничего необычного. Но давайте вспомним: если могут существовать две волны, то возможна и их суперпозиция. Однако суперпозиция двух квантовых волн, соответствующих атому кислорода, означает, что этот атом будет одновременно находиться и в правом, и в левом углу комнаты.

При этом никто никогда не наблюдал атом кислорода в двух местах одновременно. [231] Большинство физиков полагают, что квантовые системы изолированы и что они перестают действовать в соответствии с квантовыми законами в результате процесса, называемого декогерентностью. Важно понять, что учёные ни разу не наблюдали квантовое поведение напрямую. Когда человеческий глаз регистрирует фотон, тот оставляет свой отпечаток на сотнях атомов. Именно его воспринимает мозг (то есть, по сути, всё, что мы видим, — это мы сами). Сотни атомов трудно удержать в суперпозиции (волны прекращают накладываться друг на друга, наступает декогерентность), и квантовые свойства утрачиваются. Однако, если бы все эти атомы можно было удержать в суперпозиции, квантовые эффекты, в принципе, могли бы проявляться в любых масштабах. Сегодня физики пытаются достичь этого, например построить «квантовый компьютер», основанный на способности квантовых систем одновременно проводить множество процессов. С другой стороны, Роджер Пенроуз полагает, что квантовые эффекты не могут проявляться во всех возможных масштабах и что существует порог массы, за которым происходит переход от квантовой физики к классической. Какая из сторон права, выяснится в результате экспериментов. См.: Chown M. Quantum Theory Cannot Hurt You. — London: Faber & Faber, 2006. Если он оказывается в левом углу комнаты, то волна, соответствующая тому же атому в правом углу, моментально коллапсирует. Это утверждается в уравнении Шрёдингера. До тех пор пока местоположение атома не будет точно определено, существует множество вероятностей, но как только наблюдатель увидит атом, актуализируется лишь одна из них. Атом оказывается в строго определённой точке со 100%-ной вероятностью. Величие уравнения Шрёдингера состоит в том, что оно примиряет две непримиримые стороны, объединяя частицы и волны в единое математическое целое. [232] Соотнесение квантового мира, где всё существует в диапазоне вероятностей, и повседневного мира, где существование каждой вещи строго определено, — это фундаментальная и глубокая задача. Существует как минимум 13 интерпретаций квантовой теории, которые пытаются сделать это, и все они предсказывают одни и те же результаты для каждого возможного эксперимента. Возможно, самой невероятной интерпретацией является теория множественных миров, предложенная Хью Эвереттом III в 1957 году. Согласно ей каждая волна в суперпозиции описывает отдельную реальность. Например, если атом кислорода находится в суперпозиции двух волн, одна из которых описывает его расположение в левой части комнаты, а вторая — в правой, на самом деле он находится в обоих местах одновременно, но в двух параллельных реальностях.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Гравитация. Последнее искушение Эйнштейна»

Представляем Вашему вниманию похожие книги на «Гравитация. Последнее искушение Эйнштейна» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Гравитация. Последнее искушение Эйнштейна»

Обсуждение, отзывы о книге «Гравитация. Последнее искушение Эйнштейна» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x