Маркус Чаун - Гравитация. Последнее искушение Эйнштейна

Здесь есть возможность читать онлайн «Маркус Чаун - Гравитация. Последнее искушение Эйнштейна» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2017, Жанр: Физика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Гравитация. Последнее искушение Эйнштейна: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Гравитация. Последнее искушение Эйнштейна»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Разгадав тайну гравитации, мы сможем ответить на величайшие вопросы науки: что такое пространство? Что такое время? Что такое Вселенная? Откуда все это взялось?
Прославленный научно-популярный автор Маркус Чаун приглашает вас в увлекательное путешествие — с того момента, как в 1666 году гравитация была признана физической силой, до открытия гравитационных волн в 2015 году. Близится тектонический сдвиг в наших представлениях о физике, и эта книга рассказывает, какие вопросы ставит перед нами феномен гравитации.

Гравитация. Последнее искушение Эйнштейна — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Гравитация. Последнее искушение Эйнштейна», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Но если направление времени связано с постепенным исчезновением порядка во Вселенной, значит, в прошлом, в частности в момент Большого взрыва, она должна была быть более упорядоченной. Это создаёт проблему для физиков, потому что упорядоченность — это крайне невероятное состояние. Если верить Ларри Шульману из Университета Кларксон, штат Нью-Йорк, [216] Schulman L. S. Source of the observed thermodynamic arrow // Journal of Physics: Conference Series. — 2009. — Vol. 174. — 012022. — arXiv:0811.2787 . в решении этой задачи может помочь гравитация.

Изначально Вселенная представляла собой раскалённый шар, материя в котором была распределена равномерно. Это состояние было неупорядоченным. Но примерно через 380 000 лет с момента своего возникновения температура шара снизилась достаточно для того, чтобы электроны могли вступить во взаимодействие с ядрами и сформировать первые атомы. Свободные электроны очень активно взаимодействуют с фотонами, а электроны в атомах — нет. В тот момент на каждый электрон приходилось примерно десять миллиардов фотонов. Соответственно, до формирования атомов фотоны просто разрывали материю и гравитация не могла собрать её воедино. А вот после того, как возникли атомы, это стало возможным. Именно гравитация «включила» Вселенную. Частицы материи увеличивались в размерах до тех пор, пока не сформировали скопления галактик, которые мы можем наблюдать и сегодня.

Для материи, подверженной воздействию гравитации, самым естественным состоянием является группирование в объекты вроде звёзд и галактик. Но, как уже говорилось выше, в возрасте 380 000 лет материя во Вселенной была распределена равномерно, а вероятность её пребывания в таком состоянии крайне низка. «Включение» гравитации перевело Вселенную в иное состояние, которое и требовалось для того, чтобы «стрела времени» полетела в нужном направлении.

В этом объяснении есть кое-что удивительное: судя по всему, непосредственно до и сразу после рубежа 380 000 лет («эпохи последнего рассеяния») Вселенная выглядела почти одинаково. Разница состояла лишь в том, что гравитация стала всемогущей. Но с гравитационной точки зрения Вселенная перешла из вероятного состояния в невероятное. Аналогично Шульману об этом рассуждал и британский физик Роджер Пенроуз.

Открытие реликтового излучения Пензиасом и Уилсоном заставило физиков задаться множеством вопросов. Вселенная началась с Большого взрыва, но что это было за событие? Что его вызвало? Что происходило до него? Отвечать на них никому не хотелось, поэтому большинство астрономов, включая и самих Пензиаса и Уилсона, предпочитали теорию вечной и стационарной Вселенной.

Существовала и ещё одна проблема, затрагивавшая самую суть общей теории относительности. Если мысленно прокрутить расширение Вселенной назад, как предлагал Гамов, можно увидеть, что она будет становиться ещё плотнее и ещё горячее, а пространство-время будет всё сильнее и сильнее искривляться. В итоге всё сведётся к бесконечности, к ещё одной ужасной сингулярности, пускай и временно́й, а не пространственной, как чёрная дыра.

Итак, в теории Эйнштейна появился второй пробел. Из нарядного платья общая теория относительности превращалась в лохмотья, побитые молью.

Но для неё всё ещё оставалась надежда. [217] Сам Эйнштейн никогда не верил в чёрные дыры. В октябре 1939 года он опубликовал работу, в которой (ошибочно) заявил, что для образования чёрной дыры из скопления звёзд они должны вращаться вокруг друг друга со скоростью больше скорости света, что невозможно в соответствии со специальной теорией относительности. См. Einstein A. On a Stationary System With Spherical Symmetry Consisting of Many Gravitating Masses // Annals of Mathematics. Second Series. — 1939. — Vol. 40. — No. 4. — P. 922 ( https://www.jstor.org/stable/1968902 ). Сингулярности не были неизбежными — из них существовал выход.

Теоремы о сингулярности

Даже если гравитация превращает внутренности умирающей звезды в зефир, его поверхность не становится идеально гладкой. То тут, то там возникают бугры. Чем плотнее сжимается звезда, тем более очевидными оказываются эти неровности. Иными словами, коллапсирующая звезда не идеально симметрична и не все её части в какой-то момент сольются в одну точку с невероятной плотностью. Некоторые останутся за её пределами, а значит, сингулярность не сформируется и теория Эйнштейна сможет продержаться ещё какое-то время.

Принцип, работающий для чёрных дыр, может быть верным и для Большого взрыва. Если материя неравномерно распределена по Вселенной, значит, в более плотном её состоянии эти неровности были ещё более явно заметны. При сжатии они точно так же не сойдутся в одной точке, и ужасающая сингулярность снова не возникнет. Эйнштейновская теория будет работать, а значит, можно будет проследить историю Вселенной до периода, предшествовавшего Большому взрыву. Возможно, например, что она какое-то время коллапсировала до крошечной точки, которая затем взорвалась.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Гравитация. Последнее искушение Эйнштейна»

Представляем Вашему вниманию похожие книги на «Гравитация. Последнее искушение Эйнштейна» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Гравитация. Последнее искушение Эйнштейна»

Обсуждение, отзывы о книге «Гравитация. Последнее искушение Эйнштейна» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x