1 ...5 6 7 9 10 11 ...267 На самом деле поддержка студентов была чрезвычайно важна на всех этапах создания этого труда. Начиная с 2005 г. я преподавал Квантовую Механику I шесть раз примерно 200 студентам, и многие из них внесли в книгу важный вклад. Вот их имена: Рассел Бейт, Данте Бенчивенга, Трэвис Брэннан, Артур Бери-Джоунз, Авик Чандра, Хосе да Коста, Иш Дханд, Стефан Донса, Марк Жирар, Крис Хили, Катаня Кунтц, Кимберли Оуэн, Адарш Прасад, Мэтью Ричардс, Стивен Роговски, Мэттью Таунли-Смит, Раджу Валивартхи. Помощь студентов состояла не только в построении решений; они постоянно искали ошибки и задавали многочисленные вопросы, которые позволяли мне увидеть, какие части текста недостаточно понятны и требуют пояснений. Опять же, я не смогу назвать всех, кто мне помогал, поэтому должен попросить прощения у тех, кого не упомянул.
Поскольку вдохновением для создания данного метода обучения во многом послужил мой собственный опыт в старшей школе, я всегда хотел опробовать его в той же обстановке. Мне это удалось в 2013 г., когда я взял академический отпуск в своем университете, чтобы помочь в создании Российского квантового центра в Москве. Я организовал кружок по квантовой физике для московских школьников. Вместе с командой преподавателей-энтузиастов во главе с Алексеем Федоровым мы еженедельно встречались с учащимися, чтобы выслушать, как они решили задачи из конспекта (решений мы им не давали), исправить их ошибки, объяснить тонкости и — что не менее важно — обсудить сам конспект. Отзывы, полученные в ходе этих дискуссий, сыграли важную роль в формировании настоящего текста, а несколько участников кружка, включая Алексея, теперь стали профессиональными учеными, занимающимися исследованиями квантовых технологий на постоянной основе.
Я хотел бы поблагодарить Стефана Лайла за тщательную вычитку книги и множество разумных замечаний.
Но самую свою горячую благодарность я выражаю своей жене Бхавии Равал. Сейчас, когда я пишу эти строки, она в пути — едет забирать нашу дочку Софи от дедушки. Это лишь одна из многих сотен ситуаций, в которых мне следовало бы, по идее, быть с семьей, а не прятаться за монитором, выводя на экране странные закорючки. Но теперь даже бесконечное терпение Бхавии, кажется, истощается. Вчера мы по ее совету посмотрели фильм «Париж подождет», в котором жена одного парня, который слишком много работает, позволяет соблазнить себя его коллеге-французу. Дорогая, намек понят. Париж больше не может ждать. И это последнее предложение, которое я добавляю в книгу!
Калгари, 10 декабря 2017 г.
Глава 1. Квантовые постулаты
А дальше — стоп.
А дальше, извини, стена.
1.1. Предмет квантовой механики
Пожалуй, первое, что нужно понять о квантовой механике, — это то, что к механике она имеет такое же отношение, как, скажем, к электродинамике, оптике, физике конденсированного состояния или высоких энергий. Квантовая механика, по существу, не описывает какой-то конкретный класс физических явлений; скорее, она обеспечивает универсальную теоретическую основу , которую можно использовать во всех областях физики, — так операционная система компьютера обеспечивает базу, на которой могут исполняться другие приложения. Употребление термина «квантовая механика» сложилось исторически, поскольку впервые квантовую основу удалось успешно применить при исследовании механического движения электронов в атоме. Более удачными терминами были бы «квантовая физика» или «квантовая теория».
Так что предмет квантовой механики (квантовой физики) глобален: она охватывает все физические явления во Вселенной. Однако применять квантовый подход имеет смысл только в случае очень маленьких (микроскопических) физических систем. Поведение более крупных систем очень хорошо аппроксимируется законами классической физики, намного более простыми и интуитивно понятными, по крайней мере для существ, эволюция которых проходила именно на этом масштабе величин.
Проиллюстрируем это примером. Вы, вероятно, слышали о принципе неопределенности Гейзенберга: ∆p∆x ≳ ℏ /2 . То есть координату и импульс частицы невозможно измерить точно и одновременно: произведение неопределенностей составляет по крайней мере ℏ /2 ≈ 5 × 10 −35кг∙м 2/с. Чтобы макроскопический объект с массой порядка килограмма достиг предела неопределенности, потребовалось бы измерить и координату объекта с точностью порядка ~ 10 –17м и скорость с точностью ~ 10 –17м/с. Это, разумеется, нереально, так что для всех практических целей мы можем просто забыть о принципе неопределенности и рассматривать координату и импульс как точные величины. Но для электрона массой ~ 10 –30кг произведение неопределенностей координаты и скорости составит около 5 × 10 –5м 2/с, что вполне укладывается в экспериментально доступную точность измерений и должно приниматься во внимание.
Читать дальше
Конец ознакомительного отрывка
Купить книгу