Julian Barbour - The End of Time - The Next Revolution in Physics

Здесь есть возможность читать онлайн «Julian Barbour - The End of Time - The Next Revolution in Physics» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2001, Издательство: Oxford University Press, Жанр: Физика, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

The End of Time: The Next Revolution in Physics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The End of Time: The Next Revolution in Physics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Two views of the world clashed at the dawn of thought. In the great debate between the earliest Greek philosophers, Heraclitus argued for perpetual change, but Parmenides maintained there was neither time nor motion. Over the ages, few thinkers have taken Parmenides seriously, but I shall argue that Heraclitan flux, depicted nowhere more dramatically than in Turner’s painting below, may well be nothing but a well-founded illusion. I shall take you to a prospect of the end of time. In fact, you see it in Turner’s painting, which is static and has not changed since he painted it. It is an illusion of flux. Modern physics is beginning to suggest that all the motions of the whole universe are a similar illusion – that in this respect Nature is an even more consummate artist than Turner. This is the story of my book.
Richard Feynman once quipped that "Time is what happens when nothing else does." But Julian Barbour disagrees: if nothing happened, if nothing changed, then time would stop. For time is nothing but change. It is change that we perceive occurring all around us, not time. Put simply, time does not exist. In this highly provocative volume, Barbour presents the basic evidence for a timeless universe, and shows why we still experience the world as intensely temporal. It is a book that strikes at the heart of modern physics. It casts doubt on Einstein's greatest contribution, the spacetime continuum, but also points to the solution of one of the great paradoxes of modern science, the chasm between classical and quantum physics. Indeed, Barbour argues that the holy grail of physicists--the unification of Einstein's general relativity with quantum mechanics--may well spell the end of time. Barbour writes with remarkable clarity as he ranges from the ancient philosophers Heraclitus and Parmenides, through the giants of science Galileo, Newton, and Einstein, to the work of the contemporary physicists John Wheeler, Roger Penrose, and Steven Hawking. Along the way he treats us to enticing glimpses of some of the mysteries of the universe, and presents intriguing ideas about multiple worlds, time travel, immortality, and, above all, the illusion of motion. The End of Time is a vibrantly written and revolutionary book. It turns our understanding of reality inside-out.

The End of Time: The Next Revolution in Physics — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The End of Time: The Next Revolution in Physics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The second reason why Einstein became so excited was that Gauss’s method matched his own idea of general relativity. He disliked the distinguished frames of special relativity because they corresponded to special ways of ‘painting’ coordinate systems onto space-time. He felt that this was the same as having absolute space and time. They would be eliminated only if the coordinate systems could be painted on space-time in an arbitrary way. But this was what Gauss’s method amounted to. In fact, in a curved space it is mathematically impossible to introduce rectangular coordinates. Mathematicians call the possibility of using completely arbitrary coordinate systems general covariance . Specifically, laws are said to be generally covariant if they take exactly the same form in all coordinate systems. Einstein identified this with his requirement of general relativity.

To summarize this part of the story, in 1912 Einstein became aware of the possibilities opened up by non-Euclidean geometry and the work initiated by Gauss. He had begun to suspect that gravitational fields would make geometry non-Euclidean. He was also almost desperate to find a formalism that did not presuppose distinguished frames of reference. He found that Gauss’s method of arbitrary coordinates was tailor-made for his ambitions. He also saw that, space and time having been so thoroughly fused by Minkowski, the only natural thing to do was to make space-time into a kind of Riemannian space. The ideas of Gauss and Riemann must be applied, not to space alone, but to space and time. This is the incredibly beautiful idea that Minkowski made possible: gravity was to be explained by curvature in space and time . Einstein thus conjectured that space-time is curved by gravity, and that bodies subject only to gravity and inertia follow geodesics determined by the distance properties of space-time, which encapsulate all its geometrical properties. Einstein’s conjecture has been brilliantly confirmed to great accuracy in recent decades.

THE FINAL HURDLE

Finding the law of motion of bodies in a gravitational field was only part of Einstein’s problem. He also had to find how matter created a gravitational field. He needed to find equations for the gravitational field somewhat like those that Maxwell had found for the electromagnetic field. They would establish how matter interacted with the gravitational field, and also how the field itself varied in regions of space-time free of matter (matching the way electromagnetic radiation propagated as light through space-time). This part of the problem created immense difficulties for Einstein, mostly through very bad luck.

Much as I would like to tell the complete story, which is fascinating and full of ironies, I shall have to content myself with saying that, after three nerve-wracking years, Einstein finally found a generally covariant law that described how matter determined the curvature of space-time. It involves mathematical structures called tensors, all the properties of which had already been studied by mathematicians. In particular, for space-time free of matter, Einstein was able to show that a tensor known as the Ricci tensor (because it had been studied by the Italian mathematician Gregorio Ricci-Curbastro) must be equal to zero. Ironically, Grossmann had already suggested to Einstein in 1912 that in empty space the vanishing of the Ricci tensor might be the generally covariant law he was seeking. However, some understandable mistakes prevented them from recognizing the truth at that time.

It is a striking fact that all the mathematics Einstein needed already existed. In fact, I believe it is significant that he did not have to invent any of it. In 1915, he was immediately able to show that, to the best accuracy astronomers could achieve at that time, his theory gave identical predictions to Newtonian gravity except for a very small correction to the motion of Mercury. All planetary orbits are ellipses. A planet’s elliptical orbit itself very slowly rotates, under the gravitational influence of the other planets. This is known as the advance of the perihelion, the perihelion being the point at which the planet is closest to the Sun, marking one end of the ellipse’s longest diameter. According to Einstein’s theory, Mercury’s perihelion should advance by 43 seconds of arc per century more than was predicted by Newtonian theory. This very small effect shows up for Mercury because it is closer to the Sun than the other planets, and also has a large orbital eccentricity. For many years, the sole discrepancy in the observed motions of the planets had been precisely such a perihelion advance for Mercury of exactly that magnitude. All attempts to explain it had hitherto failed. Einstein’s theory explained it straight off.

GENERAL RELATIVITY AND TIME

Many more things could be said about general relativity and its discovery. However, what I want to do now is identify the aspects of the theory and the manner of its discovery that have the most bearing on time.

First, the classical (non-quantum) theory as it stands seems to make nonsense of my claim that time does not exist. The space-time of general relativity really is just like a curved surface except that it has four and not two dimensions. A two-dimensional surface you can literally see: it is a thing extended in two dimensions. In their mind’s eye, mathematicians can see four-dimensional space-time, one dimension of which is time, just as clearly. It is true that time-like directions differ in some respects from space-like directions, but that no more undermines the reality of the time dimension than the difference between the east-west and north-south directions on the rotating Earth makes latitude less real than longitude. However, the qualification ‘as it stands’ at the start of this paragraph is important. In the next chapter we shall see that there is an alternative, timeless interpretation of general relativity.

Next, there is the matter of the distinguished coordinate systems. In one sense, Einstein did abolish them. Picture yourself in some beautiful countryside with many varied topographic features. They are the things that guide your eye as you survey the scene. The real features in space-time are made of curvature, and hills and valleys are very good analogies of them. Imagined grid lines are quite alien to such a landscape. In general relativity, the coordinated lines truly are merely ‘painted’ onto an underlying reality, and the coordinates themselves are nothing but names by which to identify the points of space-time.

For all that, space-time does have a special, sinewy structure that needs to be taken into account. Distinguished coordinate systems still feature in the theory. This is because the theory of measurement and the connection between theory and experiment is very largely taken over from special relativity. In fact, much of the content of general relativity is contained in the meaning of the ‘distance’ that exists in space-time. This is where the analogy between space-time and a landscape is misleading. We can imagine wandering around in a landscape with a ruler in our pocket. Whenever we want to measure some distance, we just fish out the ruler and apply it to the chosen interval. But measurement in special relativity is a much more subtle and sophisticated business than that. In general, we need both a rod and a clock to measure an interval in space-time. Both must be moving inertially in one of the frames of reference distinguished by that theory, otherwise the measurements mean nothing. The theory of measurement in general relativity simply repeats in small regions of space-time what is done in the whole of Minkowski space-time in special relativity. No measurements can be contemplated in general relativity until the special structure of distinguished frames that is the basis of special relativity has been identified in the small region in which the measurements are to be made.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «The End of Time: The Next Revolution in Physics»

Представляем Вашему вниманию похожие книги на «The End of Time: The Next Revolution in Physics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «The End of Time: The Next Revolution in Physics»

Обсуждение, отзывы о книге «The End of Time: The Next Revolution in Physics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x