Под эти, скорее, описательные идеи недавно был подведен твердый математический фундамент. В 1973 г. трое молодых теоретиков – Хью Дэвид Политцер из Гарварда и Дэвид Гросс с Фрэнком Вилчеком из Принстона – показали, что в особом классе квантовых теорий поля силы между кварками при сближении частиц действительно сходят на нет. (Этот класс носит название «неабелевых калибровочных теорий», здесь слишком долго объяснять почему.) Эти теории обладают замечательным свойством «асимптотической свободы»: на асимптотически (бесконечно. – Прим. пер.) малых расстояниях или, что то же самое, при высоких энергиях кварки ведут себя как свободные частицы. Коллинз и Перри из Кембриджского университета даже показали, что в любой теории с асимптотической свободой свойства среды при достаточно высоких температуре и плотности сильно напоминают поведение набора свободных частиц. Таким образом, неабелевы калибровочные теории с математической неизбежностью приводят к очень простой картине ранней Вселенной в первую сотую долю секунды, Вселенной, наполненной свободными элементарными частицами.
Кварковая модель хорошо себя зарекомендовала с самых разных сторон. Протоны и нейтроны на самом деле ведут себя так, будто состоят из трех кварков. Свойства ро-мезонов легко объясняются, если предположить, что они состоят из кварка и антикварка, и т. д. Но, несмотря на все успехи, последние задали нам одну из величайших головоломок. Даже самым энергичным из существующих на сегодня ускорителей оказалось не под силу разбить какой-нибудь адрон на составляющие его кварки.
Невозможность заполучить хотя бы один одиночный кварк беспокоит и космологов. Если бы адроны при той температуре, что была в ранней Вселенной, распадались на отдельные кварки, некоторые из последних должны были бы дожить до наших дней. По оценкам советского астрофизика Я. Б. Зельдовича, в современной Вселенной свободных кварков должно быть примерно столько же, сколько атомов золота. Последнее, прямо скажем, встретишь нечасто, но приобрести унцию золота намного проще, чем унцию кварков.
Отсутствие одиночных кварков – одна из самых насущных проблем, будоражащих сегодня теоретическую физику. Как предположили Гросс, Вилчек и ваш покорный слуга, ее решение, возможно, лежит в самом понятии «асимптотическая свобода». Если взаимодействие между кварками при их сближении ослабевает, то, удаляясь друг от друга, они должны притягиваться сильнее. Следовательно, чтобы оторвать один кварк от остальных в адроне, требуется тем больше энергии, чем больше расстояние между ними. В некоторый момент она может сравняться с энергией, необходимой для рождения из вакуума новой пары кварк – антикварк. В итоге вместо нескольких свободных кварков получается несколько обычных адронов. Это все равно, что пытаться сильно потянуть резиновый жгут: он порвется, и получатся два жгута! В ранней Вселенной кварки находились очень близко друг к другу, поэтому не чувствовали соседей и вели себя как свободные частицы. Но потом, когда Вселенная расширилась и охладилась, все кварки либо проаннигилировали с антикварками, либо нашли себе пристанище в протоне или нейтроне.
Но хватит о сильных взаимодействиях. Природа припасла для нас и другие проблемы, которые встают в полный рост по мере того, как мы переводим часы на начало отсчета.
Одно из по-настоящему удивительных предсказаний современных теорий элементарных частиц – фазовый переход в ранней Вселенной, чем-то напоминающий замерзание воды при температуре ниже 273 К (0 °C). За это ответственны не ядерные силы, а несколько другой класс короткодействующих сил – слабые взаимодействия.
Последние вызываются некоторыми радиоактивными распадами, как то распад свободного нейтрона (см. с. 132) или любой процесс с участием нейтрино (см. с. 138). Как ясно из названия этого взаимодействия, оно гораздо слабее, чем электромагнитное или сильное. Например, слабые силы, возникающие при столкновении нейтрино и электрона с общей энергией в один миллион электронвольт, в десять миллионов раз (10 –7) уступают электромагнитным, образующимся при столкновении с той же энергией электронов.
Несмотря на различие в интенсивности слабых и электромагнитных взаимодействий, ученые давно догадывались, что между ними существует глубокая связь. В 1967 г. мною, а в 1968 г. – независимо – Абдусом Саламом была предложена теория поля, объединяющая оба эти взаимодействия. Она предсказала новый класс слабых процессов – так называемые нейтральные токи, которые были экспериментально обнаружены лишь в 1973 г. Новые экпериментальные подтверждения теории появились в 1974 г., когда было положено начало открытию целого семейства неизвестных ранее адронов. Основная идея такого рода теорий в следующем. Утверждается, что природа обладает высокой степенью симметрии, устанавливающей связь между частицами и силами, которую, однако, в обычных физических явлениях не так просто разглядеть. Почти все модели сильного взаимодействия, предложенные после 1973 г., относятся к тому же математическому классу (неабелевы калибровочные теории). И многие физики сегодня возлагают на подобные модели большие надежды, предполагая, что с их помощью удастся единым образом описать все природные взаимодействия: слабое, электромагнитное, сильное и, возможно, гравитационное. Такие надежды небеспочвенны: единые калибровочные теории обладают уникальным свойством, на которое в свое время указывали Салам и я и которое было строго доказано в 1971 г. Герардом т‘Хоофтом и Бенджамином Ли. В них слагаемые, соответствующие сложным фейнмановским диаграммам, хоть и расходятся, но приводят тем не менее к конечным результатам для всех физических величин.
Читать дальше