Первая гласит: такого понятия, как «элементарный» адрон, не существует, каждый адрон не менее фундаментален, чем любой другой. Это утверждение применимо не только к стабильным и почти стабильным адронам вроде протона и нейтрона или к умеренно нестабильным частицам, таким как пи-мезоны, K-мезоны, эта-мезоны и гипероны, которые по крайней мере успевают оставить заметные следы на фотопластинках и в пузырьковых камерах, но и к совершенно нестабильным «частицам» наподобие ро-мезонов. Последние живут настолько мало, что, даже двигаясь почти со скоростью света, едва успевают пройти расстояние, равное поперечнику атомного ядра. Эту парадигму, развитую в конце 1950-х – начале 1960-х гг. в основном благодаря усилиям Джеффри Чу из Беркли, иногда называют «ядерным равноправием».
Если следовать столь либеральному определению адрона, то температура в один триллион градусов окажется выше температурных порогов буквально для сотен известных адронов – а что говорить о неизвестных?! Некоторые теории предсказывают даже бесконечное количество разновидностей частиц: чем выше температура, тем быстрее будет нарастать число сортов. Глядя на такой мир, казалось бы, остается только сдаться. Однако за этой безумной сложностью спектра частиц может стоять изумительная простота. Скажем, ро-мезон – это адрон, который можно себе представить состоящим из двух пи-мезонов. Поэтому, включив его в наши выкладки явно, мы тем самым в определенной степени учли сильное взаимодействие между пи-мезонами. А может быть, если включить в расчет термодинамических характеристик все адроны, можно забыть о любых эффектах сильного взаимодействия?
Далее. Если в природе действительно существует бесконечное множество различных адронов, то энергия, поставляемая в заданный объем, может идти не на увеличение хаотических скоростей частиц, а на производство все новых и новых их разновидностей. Температура в таком случае будет увеличиваться медленнее, чем если бы у нас было конечное число адронов. Более того, в подобных моделях может возникать даже максимальная температура, при которой плотность энергии становится бесконечной. Если это так, то такая температура, как и абсолютный нуль, недостижима. Идею о ней в адронной физике, впервые высказанную Р. Хагедорном из швейцарского ЦЕРНа, позже подхватили другие физики-теоретики, включая Кэсуня Хуана из МИТа и меня. Значение этой температуры можно оценить довольно точно, и оно оказывается на удивление низким – всего около 2 триллионов градусов (2×10 12К). Чем ближе мы подходим к самому началу, тем ближе температура к этому максимуму и тем богаче разнообразие адронов. Однако даже в столь экзотическом сценарии существует начало, момент времени, – скажем, за одну сотую секунды до первого стоп-кадра из главы 5, – когда плотность энергии бесконечна.
Есть и альтернативная гипотеза, которая на интуитивном уровне кажется правдоподобнее, чем «ядерное равноправие», – в том числе и мне. Неудивительно, что она более популярна. Согласно ей не все частицы созданы равными: некоторые из них элементарны, а другие, в свою очередь, сами состоят из первых. По современным представлениям, к элементарным частицам относятся фотон и все известные лептоны, но не относится ни один из известных адронов. Считается, что последние построены из более фундаментальных кирпичиков, называемых кварками.
Теория кварков обязана своим существованием Мюррею Гелл-Манну из Калтеха [6] Калтех – Калифорнийский технологический институт. – Прим. пер.
и (работавшему независимо) Джорджу Цвейгу оттуда же. Когда понадобилось называть различные сорта кварков, физики-теоретики дали волю своей фантазии. Кварки бывают разных видов (или «ароматов»), и каждый носит свое имя. Например, есть «верхние», «нижние», «странные» и «очарованные». Кварковые «ароматы» бывают разных «цветов» (в Америке их называют красным, белым и синим). Небольшая теоретическая группа из Пекина долгое время развивала аналог кварковой теории. Но ее члены придерживались названия «стратоны», поскольку эти частицы представляют собой более глубокий субстрат действительности.
Если кварки имеют отношение к реальности, то физика ранней Вселенной может быть гораздо проще, чем мы думали. О силах, действующих между кварками, можно судить по их пространственному распределению внутри нуклона, а его, в свою очередь, можно измерить (если кварковая модель верна) в высокоэнергетичных столкновениях электронов с нуклонами. Несколько лет назад сотрудники МИТа и Стэнфордского университета провели подобный эксперимент в Стэнфордской лаборатории линейного ускорителя и обнаружили, что, похоже, чем ближе кварки друг к другу, тем меньше они друг на друга воздействуют. Это значит, что при температуре порядка нескольких триллионов градусов адроны просто-напросто распадаются на кварки. Подобно тому, как при тысячах градусов атомы – на электроны и ядра, а ядра при миллиардах градусов – на протоны и нейтроны. В рамках этой теории можно считать, что очень ранняя Вселенная заполнена смесью свободных фотонов, лептонов, антилептонов, кварков и антикварков, причем каждый сорт частиц ведет себя как чернотельное излучение и дает соответствующий вклад в общую плотность энергии. После этого ничего не стоит убедиться в том, что у мироздания было начало, состояние с бесконечной плотностью и температурой, существовавшее за одну сотую секунды до первого стоп-кадра.
Читать дальше