Гибкость человеческого тела обеспечивает свободу для самых разных вращений, но эта же гибкость может вызвать проблемы. Представьте себе астронавта в открытом космосе с ракетным ранцем, отрегулированным так, чтобы посылать человека прямо вперед. Если этот астронавт вытянет одну руку в сторону, центр его массы слегка сместится в эту же сторону и он начнет не только двигаться вперед, но и вращаться. Прежде чем разрешить астронавтам самостоятельно передвигаться в пространстве вне космического корабля, необходимо было понять, как изменения в положении тела могут повлиять на его движение и устойчивость. С этой целью были разработаны подробные математические модели человека, в которых каждая секция тела рассматривалась как цилиндр, шар, эллипсоид или параллелепипед. Результатом обсуждения этих моделей стало одно из самых романтичных описаний человеческого тела, когда-либо преданных бумаге:
Человеческое тело есть сложная система эластичных масс, относительное положение которых меняется при движении конечностей {20} .
Результаты исследований, посвященных маневрированию в невесомости, первоначально предполагалось проверить в космосе во время полета корабля «Джемини-9» 5 июня 1966 г., и сделать это должен был астронавт Юджин Сернан, снабженный специальной ракетной установкой для маневрирования. Но, поскольку при подготовке к выходу Сернан перенапрягся, стекло его шлема запотело и испытание пришлось отменить. В результате первый опыт свободной (беспривязной) внекорабельной деятельности (ВКД) был реализован лишь много позже, 7 февраля 1984 г., когда астронавт Брюс Маккэндлесс испытал более сложную установку для маневрирования (MMU). Эта установка, внешне очень напоминавшая высокотехнологичное кресло, имела 24 сопла, которые можно было активировать с подлокотника пилота, чтобы регулировать вращение, ориентацию и тягу.
Соединенные Штаты были не единственной страной, где изучали маневрирование в невесомости. У Советского Союза в 1960-е гг. была собственная программа космических медико-биологических исследований, которая проводилась с использованием различных средств, включая самолет для создания невесомости, центрифуги и подводные тренировки для имитации действий в условиях пониженной силы тяжести. Как и их американские коллеги, авторы отчета 1965 г. с должным уважением разобрали во введении задачу о падающей кошке, хотя и ошиблись немного в изложении ее истории.
Многие специалисты по механике прежде считали, что живое существо не может повернуть свое тело вокруг некоторой оси в безопорной позиции. В качестве основного аргумента они приводили закон сохранения момента импульса (закон площадей).
…
Ошибочность таких утверждений доказал Депре. Он сделал несколько фотографий падающей кошки, которая без особого труда всегда переворачивалась лапами книзу. Этот факт казался необъяснимым с точки зрения фундаментальных законов механики, а именно закона площадей {21} .
Мы помним, что фотографии сделал Марей, а не Депре, а Леви первым убедил Французскую академию в 1894 г. в том, что переворачивание кошки физически возможно. Мало того, Депре поначалу был сильнейшим противником Марея.
Для проверки собственных стратегий самовращения в условиях земной поверхности Советы использовали так называемую «скамью Жуковского» — горизонтальную платформу, свободно вращающуюся при помощи подшипника на вертикальной оси. Человек, стоящий на такой платформе, может испытать на себе стратегии горизонтального вращения — к примеру, при помощи конусообразного вращения одной вытянутой руки над головой, что заставит тело вращаться в противоположном направлении (маневр «лассо», по терминологии американских ВВС). Для знакомства с более общими маневрами курсанты в Советском Союзе пробовали осуществлять их, прыгая на батуте. Космонавтов обучали этим движениям, чтобы «они стали автоматическими, как движения гимнастов, акробатов, ныряльщиков и других спортсменов, которые тоже должны выполнять сложные развороты в фазе свободного полета».
Большинство простых маневров, придуманных в СССР и США, работают довольно медленно. Маневр «лассо», к примеру, позволит астронавту развернуться лицом в противоположную сторону, но лишь после множества оборотов руки; следовательно, произойдет это через много секунд. Кошки же способны переворачиваться за долю секунды. NASA очень интересовал вопрос о том, могут ли люди переворачиваться так же быстро, как кошки. Поиск ответа на этот вопрос требовал создания гораздо более сложных моделей и применения гораздо более строгих математических методов.
Читать дальше
Конец ознакомительного отрывка
Купить книгу