Итак, нейтрино — это частица, которая при бета-распаде уносит часть энергии. Так предполагали физики-теоретики, которые с самого начала изобрели ее как «неуловимую» частицу. И сразу же были предсказаны свойства новой частицы: она должна быть электрически нейтральной, очень проникающей и чрезвычайно малой по массе. Иначе экспериментаторам было бы нетрудно обнаружить ее, а это оказалось совсем не просто. Последнее свойство — крайне малая масса — согласно теории относительности приводит к тому, что нейтрино не может находиться в состоянии покоя: оно всегда движется со скоростью света.
После того как гипотеза о существовании нейтрино была сформулирована, физики попытались найти и другие доказательства его присутствия в бета-распаде. Как известно, при превращениях частиц, как и при любых физических процессах, происходящих в какой-нибудь системе, сохраняется не только энергия, но и количество движения, или импульс. Закон сохранения количества движения, вероятно, известен читателю: на нем основан, например, принцип действия ракеты.
Если нейтрон, испытывающий бета-распад, неподвижен, то его импульс равен нулю. Значит, и суммарный импульс всех частиц — продуктов распада — также должен быть равен нулю. Но в многочисленных опытах, первый из которых еще в 1934 г. поставил советский физик Александр Ильич Лейпунский, было показано, что суммарный импульс электрона и ядра отдачи (Z + 1) при бета-распаде ядра Z не равен нулю. Это подтверждает гипотезу о нейтрино: неуловимая частица уносит «исчезающий» импульс.
Как выяснилось после открытия других элементарных частиц, особенно так называемых мезонов, нейтрино принимает участие не только в бета-распаде ядер, но и в других процессах. Его присутствие обнаруживается всегда, когда энергия как будто исчезает. Кстати, в некоторых из этих процессов, где число образующихся частиц равно двум, а не трем, как в процессе бета-распада, характер «несохранения энергии» более чем подозрителен и требует существования нейтрино еще яснее, чем в случае бета-распада.
Например, при распаде так называемого пиона (или пи-мезона) всегда «исчезает» определенная энергия, около 30 миллионов электронвольт. В процессе захвата мюона (или мю-мезона) ядром гелия-3
μ− + 3He → 3H + ν,
обнаруженном в Объединенном институте ядерных исследований в Дубне, «исчезает» около 100 миллионов электронвольт (энергия нейтрино), а ядра отдачи трития 3Н имеют энергию, всегда точно равную 1,9 миллиона электронвольт. Если бы эти процессы были известны раньше, чем бета-распад, быть может, не было бы необходимости в гении Паули для «изобретения» нейтрино.
Подводя итоги, можно сказать, что нейтрино было «изобретено» теоретически, что свойства этой «неуловимой» частицы были первоначально постулированы с целью оправдания ее «ненаблюдаемости». Такое положение господствовало в физике нейтрино в последние 25 лет. Ферми, оставивший неизгладимый след во всех областях физики, не мог успокоиться только почетной ролью «крестного отца» нейтрино и создал количественную теорию процесса бета-распада, основанную на аналогии с теорией излучения квантов света возбужденным атомом. Согласно этой теории, подобно тому, как фотон рождается в процессе разрядки возбужденного состояния, а не находится заранее внутри возбужденного атома, так и атомное ядро испускает пару нейтрино — электрон в процессе бета-распада, а о существовании нейтрино и электронов внутри ядра речь идти не может.
Возможно, что у некоторых, если не у всех, читателей возникла скептическая мысль: ведь нейтрино открыли теоретически, исследовали косвенным образом, а не фантазия ли все это?
Теоретическое «изобретение» нейтрино, правда, вполне обоснованно. Но нейтрино, конечно, материально и, в принципе, доступно регистрации. Его ненаблюдаемость могла быть только временной, вызванной трудностями, связанными с уровнем экспериментальной техники. Поэтому физики, так же как и читатели этой статьи, вправе требовать «железной» проверки гипотезы нейтрино.
Как физики-экспериментаторы «поймали» нейтрино
Поймать неуловимое, зафиксировать эффект, вызванный свободным нейтрино, — вот что было необходимо для окончательного доказательства существования этой таинственной частицы.
Сложность задачи объяснялась колоссальной проникающей способностью, которая ожидалась для нейтрино. Откровенно говоря, об этом не было достаточно конкретно сказано в начале нашей статьи, чтобы не вызвать у читателя полного недоверия. Но сейчас речь пойдет об опытах, которые позволили «поймать» нейтрино и доказали, что оно действительно обладает теоретически приписанными ему удивительными свойствами. И теперь можно сказать, что нейтрино могут беспрепятственно проникать, скажем, сквозь чугунную плиту, толщина которой в миллиарды раз превышает расстояние от Земли до Солнца!
Читать дальше
Конец ознакомительного отрывка
Купить книгу