Итак, нейтрино — это частица, которая при бета-распаде уносит часть энергии. Так предполагали физики-теоретики, которые с самого начала «изобрели» ее как неуловимую частицу. И сразу же были предсказаны ее свойства: она должна быть электрически нейтральной и чрезвычайно малой по массе (иначе бы ее легко наблюдали). Последнее свойство, согласно теории относительности, приводит к тому, что нейтрино (если у него нет «массы покоя») не может находиться в состоянии покоя: оно всегда движется со скоростью света. Кроме того, неотъемлемым свойством нейтрино должно быть вращение.
Как выяснилось после открытия других элементарных частиц, особенно мезонов, нейтрино принимает участие и в других процессах, помимо бета-распада ядер. Его присутствие обнаруживается всегда, когда энергия как будто исчезает. Кстати, в этих процессах характер «несохранения» энергии более чем подозрителен и требует существования нейтрино даже более ясно, чем в случае бета-распада. Так, например, в одном виде процессов распада мезонов всегда исчезает определенная энергия. Если бы эти процессы были известны раньше, чем бета-распад, не было бы необходимости в гении Паули для «изобретения» нейтрино — этого непойманного вора энергии.
Я надеюсь, что сказанного достаточно для того, чтобы убедить читателя в теоретической обоснованности существования нейтрино. Но нельзя забывать, что, несмотря на свою неуловимость, нейтрино вполне материально и в принципе доступно регистрации, что его «ненаблюдаемость» вызвана лишь трудностями экспериментальной техники. Поэтому физики, равно как и читатели этой статьи, вправе требовать «железной» проверки гипотезы нейтрино. Поймать «неуловимое», зафиксировать в физическом приборе эффект, вызванный нейтрино вдали от источника его возникновения, — вот что было необходимо для того, чтобы снять мистический ореол с этой таинственной частицы.
Как мы видели, для того чтобы нейтрино прореагировало с веществом, оно должно быть пропущено сквозь астрономическую толщу вещества. Но чтобы поймать его в условиях эксперимента, можно пропускать «астрономическое» число нейтрино сквозь далекую от фантастической, скажем, метровую, толщину жидкого или твердого вещества.
На помощь пришло открытие и техническое освоение атомной энергии. Известно, какое огромное значение в науке и технике имеют ядерные реакторы — устройства, где в большом масштабе совершается деление ядер урана нейтронами. В каждом акте деления образуется несколько бета-радиоактивных ядер. Поэтому мощный урановый реактор как раз и есть нужный нам весьма интенсивный источник нейтрино. Рассмотрим, например, атомный реактор мощностью в несколько сотен тысяч киловатт. Полный поток энергии нейтрино, испускаемых этим реактором, по расчетам составит десятки тысяч киловатт. Очень много! И все же уловить «проскальзывающие» частицы крайне трудно. Сквозь защиту этого реактора, поглощающую все другие частицы, будет проникать десять тысяч миллиардов нейтрино в секунду через каждый квадратный сантиметр. Но как зафиксировать действие нейтрино? Здесь помогает теория. Она предсказывает, что должны иметь место процессы, в которых нейтрино поглощается протоном, превращающимся в нейтрон с испусканием электрона. Такие процессы, как бы обратные бета-процессам, и были обнаружены в блестящем и трудном опыте американскими физиками Райнесом и Коуэном. Можно рассчитывать, что нейтрино от нашего реактора, бомбардирующие тонну вещества, содержащего водород (иначе говоря, запас протонов), должны вызывать ежечасно около ста превращений протона в нейтрон. Эти превращения можно обнаруживать при помощи хорошо известных экспериментальных методов ядерной физики, способных регистрировать прохождение заряженных частиц. И это предвидение сбылось. «Неуловимая» уникальная частица была наконец поймана. Она занимает сейчас прочное место в семье фундаментальных «кирпичиков» материи.
Фантастическая проникающая способность нейтрино является отражением его чрезвычайно слабого взаимодействия с другими частицами. Между прочим, такое же взаимодействие испытывают и все другие элементарные частицы. Однако они наряду со слабыми испытывают и иные, несравнимо более сильные взаимодействия. Поэтому-то проникающая способность измеряется только, скажем, десятками сантиметров чугуна. А нейтрино уникально тем, что оно подвержено только слабым взаимодействиям, являясь, так сказать, их чистейшим представителем.
Читать дальше
Конец ознакомительного отрывка
Купить книгу