Алексей Левин - Белые карлики. Будущее Вселенной

Здесь есть возможность читать онлайн «Алексей Левин - Белые карлики. Будущее Вселенной» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Издательство: Альпина нон-фикшн, Жанр: Физика, sci_cosmos, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Белые карлики. Будущее Вселенной: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Белые карлики. Будущее Вселенной»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Перед вами первая книга на русском языке, почти целиком посвященная остывающим реликтам звезд, известным под именем белых карликов.
А ведь судьба превратиться в таких обитателей космического пространства ждет почти все звезды, кроме самых массивных.
История открытия белых карликов и их изучение насчитывает десятилетия, и автор не только подробно описывает их физическую природу и во многом парадоксальные свойства, но и рассказывает об ученых, посвятивших жизнь этим объектам Большого космоса.
Кроме информации о сверхновых звездах и космологических проблемах, связанных с белыми карликами, читатель познакомится с историей радиоастрономии, узнает об открытии пульсаров и квазаров, о первом детектировании, происхождении и свойствах микроволнового реликтового излучения и его роли в исследовании Вселенной.

Белые карлики. Будущее Вселенной — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Белые карлики. Будущее Вселенной», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Формула Планка неодинаково ведет себя при разных частотах. Для малых частот (или, что то же самое, для больших длин волн) интенсивность излучения при фиксированной температуре возрастает как квадрат частоты и не зависит от постоянной Планка. Этот предельный случай формулы Планка совпадает с законом Рэлея — Джинса, который справедлив для чисто классического (то есть неквантового) излучения. В пределе больших частот (или малых длин волн) интенсивность излучения, напротив, очень быстро падает с увеличением частоты. Это уже неклассический эффект, который возникает, когда излучение рассматривается как поток квантовых частиц — фотонов. Поэтому график формулы Планка с частотами на оси абсцисс и удельной интенсивностью излучения на оси ординат выглядит как сильно асимметричный колокол. Ее максимальное значение (то есть пик графика) пропорционально температуре. В нашу эпоху интенсивность реликтового излучения максимальна на частоте 160 ГГц, что соответствует миллиметровому волновому диапазону. По мере дальнейшего расширения Вселенной она будет сдвигаться в сторону еще бóльших длин волн и, соответственно, меньших частот.

Даже в нашу эпоху сильно остывшей Вселенной реликтовое излучение однозначно доминирует в Большом космосе. Каждый кубический сантиметр пространства в среднем вмещает 400–500 реликтовых фотонов с суммарной энергией порядка четверти электронвольта, что куда больше, чем для прочих излучений. Так, суммарная плотность энергии излучения в ближней инфракрасной области, в видимом спектре и в ультрафиолете по порядку величины равна 0,01 эВ/см 3. Для рентгена и гамма-излучения она измеряется стотысячными долями электронвольта на кубический сантиметр, а для радиоволн метрового диапазона — стомиллионными. Аналогично реликтовое излучение абсолютно лидирует и по плотности фотонов. Надо отметить, что эти величины отражают ситуацию лишь в межгалактическом пространстве. Естественно, что внутри галактик и вблизи звезд доминируют другие излучения. Некоторые из них, такие как солнечный свет, даже даны нам в ощущениях.

САГА О ПРЕДТЕЧАХ

Коль скоро фоновое излучение является, так сказать, непременным атрибутом нашей Вселенной, оно должно проявить себя и в космофизических процессах, то есть в принципе быть наблюдаемым. Отсюда следует тривиальный вывод: реликтовое излучение могло бы быть открыто иначе, нежели это произошло в действительности. История науки это подтверждает.

Все началось с работ астрономов-спектроскопистов, что и не удивительно. Реликтовое излучение может изменять населенности энергетических уровней атомов и молекул межзвездного газа и, следовательно, проявлять себя в линиях их оптических спектров. Благодаря этому в 1940 г. его едва не открыл канадский астроном Эндрю Маккеллар [45] McKellar, A. Molecular Lines from the Lowest States of Diatomic Molecules Composed of Atoms Probably Present in Interstellar Space, Publications of the Dominion Astro-Physical Observatory Victoria (1941), 7: 251–272. . Он узнал от директора калифорнийской обсерватории Маунт-Вилсон Уолтера Адамса, что определенная популяция рассеянного в межзвездном пространстве циана CN и его иона CN +находится не в основном состоянии, а в двух возбужденных — и, следовательно, имеет более высокую энергию. Происхождение добавленной энергии, естественно, нуждалось в интерпретации. Маккеллар пришел к выводу: такое положение дел можно объяснить тем, что космический газ нагрет до средней температуры 2,3 K (он оценил нижнюю границу нагрева в 1,8 K, а верхнюю — в 3,4 K). Если бы Маккеллар сделал следующий шаг и хотя бы чисто гипотетически допустил, что источником нагрева служит тепловое фоновое излучение такой температуры, оно, быть может, было бы открыто гораздо раньше. Однако и Маккеллар, и Адамс воздержались от такой интерпретации — вполне в духе известного изречения Ньютона Hypotheses non fingo — «Гипотез не измышляю».

Вообще-то результаты Адамса и Маккеллара отнюдь не прошли незамеченными коллегами, но не считались особенно важными. Более того, в 1950 г. известный специалист по физической химии и будущий нобелевский лауреат Герхард Герцберг практически дезавуировал данную Маккелларом оценку температуры космического циана, отметив в своей авторитетной монографии о молекулярных спектрах, что она большого значения не имеет. Как известно, ученым нередко мешают шоры.

Реликтовое излучение за десять лет до Пензиаса и Вильсона чуть не открыли в Европе. В 1955 г. французский радиоастроном Эмиль Ле Ру и его коллеги просканировали небосвод на волне длиной 33 см, используя параболическую антенну от трофейного немецкого радиолокатора времен Второй мировой войны. Они выявили изотропное излучение чернотельного типа, температура которого, по их оценке, не превышала 3 K [46] Dennise, J.-F. Le Roux E. et Steinberg J. C. Nouvelle observations du rayonnement du ciel sur la longeur d'onde 33 cm // Comptes Rendus (1957), 244: 3030–3033. . Скорее всего, это и было реликтовое излучение, однако французские ученые не пошли дальше определения верхнего предела его температуры. К тому же в другой работе того же года, одним из авторов которой также был Ле Ру, этот предел определен уже в 20 K, а трехкельвиновая оценка объяснена недостаточным учетом ошибок измерений.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Белые карлики. Будущее Вселенной»

Представляем Вашему вниманию похожие книги на «Белые карлики. Будущее Вселенной» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Белые карлики. Будущее Вселенной»

Обсуждение, отзывы о книге «Белые карлики. Будущее Вселенной» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x