Разъединение нейтрино и барионов оставило после себя неодинаковое число протонов и нейтронов. Поскольку масса нейтрона больше массы протона, вероятность их возникновения была меньшей. Поэтому после полного выхода нейтрино из игры протоны преобладали над нейтронами приблизительно в соотношении 6:1. Как известно, протоны стабильны, в то время как время жизни свободного нейтрона в среднем не более четверти часа. Когда возраст Вселенной достиг трех минут, 13 % нейтронов распалось, и на каждый нейтрон пришлось уже по семь протонов. Количество фотонов в расчете на один протон стабилизировалось на уровне 1,6 млрд и с тех пор практически не изменилось.
В истории мироздания трехминутная отметка очень важна. Именно на этой стадии впервые появилась возможность формирования самых простых составных ядер. Это были ядра дейтерия — тяжелого изотопа водорода, состоящие из протона и нейтрона. Энергия связи такого ядра равна 2,2 МэВ, что соответствует температуре порядка 25 млрд K. Температура первичной плазмы упала до этой величины, когда Вселенной было всего ¼ секунды. Можно подумать, что дейтерий мог возникнуть уже тогда, но этот вывод будет ошибочным. Электромагнитное излучение Вселенной еще долго содержало достаточное количество горячих фотонов, которые разбивали новорожденные ядра дейтерия. Дейтерий смог выжить, лишь когда доля фотонов с энергией более 2,2 МэВ сократилась до одной миллиардной (вспомним, что общее число фотонов в полтора миллиарда раз превышало число подлежащих объединению барионов!). Это случилось, когда возраст Вселенной достиг одной минуты, а еще через две минуты процесс синтеза дейтерия вошел в полную силу. Новорожденные ядра этого изотопа стали участниками различных ядерных реакций, в результате которых появились альфа-частицы — ядра гелия. Этот процесс занял лишь несколько минут и задействовал практически все нейтроны (очень небольшая их часть пошла на непереработанные в гелиевом синтезе ядра дейтерия, трития, гелия-3, лития и бериллия). Поскольку исходное соотношение протонов и нейтронов составляло 7:1, после возникновения каждой новой альфа-частицы оставалось 12 свободных протонов. Таким образом космическое пространство заполнилось ядрами водорода (75 % общей массы) и гелия (25 %). В наше время эти показатели равны 74 % и 24 % (оставшиеся 2 % приходятся на более тяжелые элементы, порожденные реакциями звездного нуклеосинтеза). Возникшие тогда ядра трития быстро распались — этот сверхтяжелый изотоп водорода, в отличие от дейтерия, нестабилен. Дейтерий, гелий-3 и литий дожили до нашей эпохи, однако их суммарная концентрация составляет малые доли процента.
Синтез гелия идет с выделением энергии (иначе не зажигались бы звезды и не взрывались водородные бомбы). Всего за несколько минут во вселенской термоядерной печи сгорело в 100 раз больше водорода, чем потом во всех звездах нашей Вселенной. Однако при этом ничего особенного не произошло. Вселенная лишь немного нагрелась, после чего продолжала остывать в ходе дальнейшего расширения. Поскольку потепление охватывало весь объем космоса, то оно не породило компактных областей горячего сжатого газа в более холодной и разреженной среде, возникающих при детонации любого заряда, хоть химического, хоть ядерного. Поэтому мощнейшее выделение энергии в ходе первичного нуклеосинтеза практически не сказалось на эволюции Вселенной (к слову, это же относится и к двум еще более сильным прогревам космоса во время аннигиляции кварков и антикварков, а затем электронов и позитронов).
Первичный нуклеосинтез вновь преобразовал состав горячей плазмы юной Вселенной. А вот потом в течение 380 000 лет она не претерпевала никаких качественных превращений — правда, за одним исключением. При расширении Вселенной плотность энергии частиц падала обратно пропорционально третьей степени масштабного фактора, а плотность энергии фотонов — четвертой степени, то есть гораздо быстрее. Это происходит из-за того, что при расширении Вселенной увеличиваются длины волн фотонов и, следовательно, уменьшаются их частоты и энергии (энергия фотона равна его частоте, умноженной на постоянную Планка). Когда Вселенной исполнилось 57 000 лет, а ее температура упала до 10 000 K, плотность лучевой энергии (к ней относят и энергию нейтрино) сравнялась с плотностью энергии частиц, а затем стала от нее отставать. Это и стало концом радиационной эры.
Каким тогда казался бы космос разумному наблюдателю, если бы таковой существовал? Когда Вселенной стукнуло 50 000 лет, она впервые засветилась видимым для нас голубым светом (до этого пронизывающие плазму фотоны были ультрафиолетовыми, а еще раньше, когда возраст Вселенной двигался от полутора минут к 600 годам, — рентгеновскими). К 200 000-летней возрастной отметке цвет фотонного фона сместился от голубого к желтому, еще через 200 000 лет стал оранжевым, а по достижении 1 млн лет сделался темно-красным. В возрасте 5 млн лет температура Вселенной упала до 600 K, практически все реликтовые фотоны перешли в инфракрасную зону, и в космическом пространстве настала беспросветная тьма. Она стала рассеиваться лишь после появления первых звезд.
Читать дальше
Конец ознакомительного отрывка
Купить книгу